
Superposition and Model Evolution Combined

Peter Baumgartner
NICTA∗and Australian National University, Canberra, Australia

Peter.Baumgartner@nicta.com.au

Uwe Waldmann
MPI für Informatik, Saarbrücken, Germany

uwe@mpi-inf.mpg.de

May 18, 2009

Abstract

We present a new calculus for first-order theorem proving with equality, ME+Sup,
which generalizes both the Superposition calculus and the Model Evolution calcu-
lus (with equality) by integrating their inference rules and redundancy criteria in a
non-trivial way. The main motivation is to combine the advantageous features of
both—rather complementary—calculi in a single framework. For instance, Model
Evolution, as a lifted version of the propositional DPLL procedure, contributes a
non-ground splitting rule that effectively permits to split a clause into non variable
disjoint subclauses. In the paper we present the calculus in detail. Our main result is
its completeness under semantically justified redundancy criteria and simplification
rules.

1 Introduction

We present a new calculus for first-order theorem proving with equality, ME+Sup, which
generalizes both the Superposition calculus and the Model Evolution calculus (with
equality), MEE. It integrates the inference rules of Superposition and of Model Evolu-
tion in a non-trivial way while preserving the individual semantically-based redundancy
criteria. The inference rules are controlled by a rather flexible labelling function on
atoms. This permits non-trivial combinations where inference rule applicability is dis-
joint, but pure forms of both calculi can be (trivially) configured, too.

On a research-methodological level, this paper attempts to bridge the gap between
instance-based methods (per MEE) and Resolution methods (per Superposition). Both
methods are rather successful, for instance in terms of performance of implemented
systems at the annual CASC theorem proving competition. However, they currently
∗NICTA is funded by the Australian Government’s Backing Australia’s Ability initiative.

1

stand rather separated. They provide decision procedure for different sub-classes of first-
order logic, and their inference rules are incompatible, too. For instance, subsumption
deletion can be used with instance-based methods in only a limited way.

The main motivation for this work is to combine the advantages of both calculi in
a single framework. Technically, ME+Sup can be seen as an extension of the essen-
tial Model Evolution inference rules by Superposition inference rules. Alternatively,
ME+Sup can be seen to extend Superposition with a new splitting rule that permits, as
a special case, to split a clause into non variable disjoint subclauses, which is interest-
ing, e.g., to obtain a decision procedure for function-free clause logic. It seems not too
difficult to extend current Superposition theorem provers with the new splitting rule, in
particular those that already provide infrastructure for a weaker form of splitting (such
as SPASS [WSH+07]). Finally, another motivation for this work is to simplify the pre-
sentation of MEE by aligning it with the better-known superposition framework. The
following clause set is prototypical for the intended applications of ME+Sup (function
symbols are typeset in sans-serif and variables in italics).

(1) x ≤ z ∨ ¬(x ≤ y) ∨ ¬(y ≤ z) (4) select(store(a, i, e), i) ≈ e
(2) x ≤ y ∨ y ≤ x (5) select(store(a, i, e), j) ≈ select(a, j) ∨ i ≈ j
(3) x ≈ y ∨ ¬(x ≤ y) ∨ ¬(y ≤ x) (6) i ≤ j ∨ ¬(select(a0, i) ≤ select(a0, j))

The clauses (1)-(3) axiomatize a total order, clauses (4)-(5) axiomatize arrays, and clause
(6) says that the array a0 is sorted and that there are no duplicates in a0 (the converse
of (6), ¬(i ≤ j) ∨ select(a0, i) ≤ select(a0, j), is entailed by (1)-(3),(6)). This clause
set is satisfiable, but Superposition equipped with standard redundancy criteria (with
or without selection of negative literals) does not terminate on these clauses. This is,
essentially, because the length of the clauses derived cannot be bounded. The clauses
(1) and (2) are enough to cause non-termination, and MEE does not terminate on (1)-
(6) either. However, ME+Sup does terminate when all ≤-atoms are labelled as “split
atoms” and all other atoms are “superposition atoms”.1 Intuitively, the ME-part of
ME+Sup takes care of computing a model for the split atoms through a context, the
main data structure of ME to represent interpretations, and the Superposition part of
ME+Sup takes care of (implicitly) computing a model for the superposition atoms. Of
course, clauses like the above are typically embedded in a larger specification and a
ME+Sup prover might not behave as well then. Yet, termination on the above clauses
demonstrates that only finitely many inferences among (1)-(6) are needed, this way
removing search space.

To demonstrate how ME+Sup can be used to effectively provide a new splitting rule
for Superposition consider the clauses (1) and (2) from above. Let us now “split” clause
(1) into two non-variable disjoint clauses by introducing a name s:

(1a) x ≤ z ∨ ¬(x ≤ y) ∨ ¬s(y, z) (1b) s(y, z) ∨ ¬(y ≤ z)
1In general, split atoms can be equations, too, and the signatures of the split and the superposition

atoms need not be disjoint. We intended to keep the examples simple.

2

Now declare all ≤-atoms as superposition atoms and all s-atoms as split atoms. Further,
all s-atoms must be strictly greater than all ≤-atoms (this can be achieved using standard
orderings and using a two-sorted signature). In effect then, resolution and factoring
inferences are all blocked on clauses that contain s-literals, as the usual maximality
restrictions for resolution and factorisation apply in ME+Sup, too. Therefore, only
factorisation is applicable, to clause (2), yielding x ≤ x. The only inference rule that
is applicable now is Neg-U-Res, which gives ¬(y ≤ z) · ¬s(y, z). (This is a constrained
clause, a pair C · Γ, where C is a clause and the constraints Γ are split atoms or their
negation.) That is, s(y, z) has been shifted into the constraint part, put aside for later
processing by ME rules. The literal ¬(y ≤ z) is now maximal in ¬(y ≤ z) · ¬s(y, z),
and resolution between this clause and (2) gives z ≤ y · ¬s(y, z). Similarly, resolution
between ¬(y ≤ z) · ¬s(y, z) and x ≤ x gives the constrained empty clause � · ¬s(x, x).
This does not make a refutation, because a model that assigns true to s(x, x), and hence
falsifies the constraint, has not been excluded. Indeed, to constrained empty clauses
the ME-style split rule is applicable, resulting in two cases (contexts), with s(x, x) and
¬s(x, x), respectively. Notice this is a non-ground splitting. The derivation stops at this
point, as no inference rule is applicable, and s(x, x) specifies a model. The other case
with ¬s(x, x) can be used to derive the empty clause � · ∅, which stands for “false”.

Related Work. ME+Sup subsumes the Superposition calculus [BG98] and its redun-
dancy concept and also the essentials of propositional DPLL, that is, split and unit
propagation. Model Evolution [BT03] and Model Evolution with Equality [BT05] are
not completely covered, though, since universal literals and some optional inference rules
are missing. The model construction that we use has some similarity with the one used
for Constraint Superposition [NR95], where one also starts with constructing a model
for reduced instances and later extends this to the full clause set provided that this is
constraint-free.

2 Formal Preliminaries

We consider signatures Σ comprised of a binary predicate symbol ≈ (equality), and a
finite set of function symbols of given arity (constants are 0-ary function symbols). We
also need a denumerable set of variables X disjoint from Σ. Terms (over Σ and X) are
defined as usual. If t is a term we denote by Var(t) the set of t’s variables. A term t
is ground iff Var(t) = ∅. A substitution is a mapping of variables to terms that is the
identity almost everywhere. We write {x1 7→ t1, . . . , xn 7→ tn} for the substitution that
maps the variable xi to the term ti, for i = 1, . . . , n. A substitution σ is applied to a
term t, written as tσ, by simultaneously applying σ to the variables in t. A renaming is a
substitution that is a bijection of X onto itself. We write s & t, iff there is a substitution
σ such that sσ = t.2 We say that s is a variant of t, and write s ∼ t, iff s & t and t & s,
or, equivalently, iff there is a renaming ρ such that sρ = t. We write s � t if s & t but

2 Note that many authors would write s . t in this case.

3

s 6∼ t. The notation s[t]p means that the term t occurs in the term s at position p, as
usual. The index p is left away when not important or clear from the context. Because
equality is the only predicate symbol, an atom is always an equation s ≈ t, which is
identified with the multiset {s, t}. Consequently, equations are treated symmetrically,
as s ≈ t and t ≈ s denote the same multiset. A literal is an atom (a positive literal) or
the negation of an atom (a negative literal). Negative literals are generally written s 6≈ t
instead of ¬(s ≈ t). In the examples below we often write a non-equational literal like
P (t1, . . . , tn), which is meant to stand for the equation P (t1, . . . , tn) ≈ tt, where tt is
a fresh constant that is smaller than all other terms, and similarly for negative literals.
We write L to denote the complement of a literal L, i.e. A = ¬A and ¬A = A, for any
atom A. A clause is a multiset of literals {L1, . . . , Ln}, generally written as a disjunction
L1∨· · ·∨Ln. We write L∨C to denote the clause {L} ∪ C. The empty clause is written
as �. All the notions on substitutions above are extended from terms to atoms, literals
and clauses in the obvious way.

Orderings. We suppose as given a reduction ordering � that is total on ground Σ-
terms.3 Following usual techniques [BG98, NR95, e.g.], it is extended to an ordering on
literals by taking a positive literal s ≈ t as the multiset {s, t}, a negative literal s 6≈ t
as the multiset {s, s, t, t} and using the extension of � to multisets of terms to compare
literals. Similarly, clauses are compared by the multiset extension of the ordering on
literals. All these (strict, partial) orderings will be denoted by the same symbol, �. The
non-strict orderings � are defined as s � t iff s � t or s = t. We say that a literal L is
maximal (strictly maximal) in a clause L∨C iff there is no K ∈ C with K � L (K � L).

Rewrite Systems. A (rewrite) rule is an expression of the form l → r where l and r
are terms. A rewrite system is a set of rewrite rules. We say that a rewrite system R is
ordered by � iff l � r, for every rule l→ r ∈ R. In this paper we consider only (ground)
rewrite systems that are ordered by �. A term t is reducible by l → r iff t = t[l]p for
some position p, and t is reducible wrt. R if it is reducible by some rule in R. The notion
irreducible means “not reducible”. A rewrite system R is left-reduced (fully reduced) iff
for every rule l→ r ∈ R, l is (l and r are) irreducible wrt. R \ {l→ r}. In other words,
in a fully reduced rewrite system no rule is reducible by another rule, neither its left
hand side nor its right hand side.

Interpretations. A (Herbrand) interpretation I is a set of ground atoms—exactly those
that are true in the interpretation. Validity of ground literals, ground clauses, and clause
sets in a Herbrand interpretation is defined as usual. We write I |= F to denote the
fact that I satisfies F , where F is a ground literal or a clause (set), which stands for
the set of all its ground instances (of all clauses in the set). An E-interpretation is
an interpretation that is also a congruence relation on the ground terms. If I is an

3 A reduction ordering is a strict partial ordering that is well-founded and is closed unter context i.e.,
s � s′ implies t[s] � t[s′] for all terms t, and liftable, i.e., s � t implies sδ � tδ for every term s and t
and substitution δ.

4

interpretation, we denote by I? the smallest congruence relation on all ground terms
that includes I, which is an E-interpretation. We say that I E-satisfies F iff I? |= F .
We say that F E-entails F ′, written F |= F ′, iff every E-interpretation that satisfies F
also satisfies F ′.

The above notions are applied to ground rewrite systems instead of interpretations by
taking the rules as equations. We write R? |= F and mean {l ≈ r | l→ r ∈ R}? |= F . It
is well-know that any left-reduced (and hence any fully reduced) ordered rewrite system
R is convergent,4 see e.g. [BN98]) and that any ground equation s ≈ t is E-satisfied by
R, i.e., R? |= s ≈ t if and only if s and t have the same (unique) normal form wrt. R.

Labelling Function. Broadly speaking, ME+Sup combines inference rules from the Su-
perposition calculus and inference rules resembling those of Model Evolution, but for
each atom only a subset of the full set of inference rules is usable. This is controlled
by assuming a labelling function that partitions the set of positive ground atoms into
two sets, the split atoms and the superposition atoms.5 We say a (possibly non-ground)
atom is a split atom (superposition atom) iff at least one ground instance is a split atom
(superposition atom).

Thus, while a ground atom is either one or the other, the distinction is blurred for
non-ground atoms. From a practical point of view, to avoid overlap between the ME

and the superposition inference rules, it is desirable to keep the (non-ground) split atoms
and superposition atoms as separate as possible.

The separation into split atoms and superposition atoms is quite flexible. No as-
sumptions regarding disjointness of their underlying signatures or ordering assumptions
between their elements are required. For instance, one may declare all ground atoms
up to a certain term depth as split atoms. Even the set of non-ground split atoms is
finite then, modulo renaming. As will become clear, the contexts evolved by the Model
Evolution part of ME+Sup are finite then, which might be interesting, e.g., to finitely
represent (parts of) a counter-example for non-theorems.

3 Contexts

Contexts have been introduced in [BT03] as the main data structure in the Model Evo-
lution calculus to represent interpretations; they have been adapted to the equality case
in [BT05], but here we work with the original definition, which is simpler and more
practical. More formally, when l and r are terms, a rewrite literal is a rule l → r or its
negation ¬(l → r), the latter generally written as l 6→ r. By treating → as a predicate
symbol, all operations defined on equational literals apply to rewrite literals as well. In
particular, l→ r = l 6→ r and l 6→ r = l→ r. If clear from the context, we use the term
“literal” to refer to equational literals as introduced earlier or to rewrite literals.

4A rewrite system is convergent iff it is confluent and terminating.
5Notice that with the symmetric treatment of equations, l ≈ r is a split atom if and only if r ≈ l is,

and similarly for superposition atoms.

5

A context is a set of rewrite literals that also contains a pseudo-literal ¬x, for some
variable x. In examples we omit writing ¬x and instead implicitly assume it is present.
A non-equational literal P (t1, . . . , tn) in a context stands for P (t1, . . . , tn) → tt, and
similarly for negative literals. Where L is a rewrite literal and Λ a context, we write
L ∈∼ Λ if L is a variant of a literal in Λ. A rewrite literal L is contradictory with a
context Λ iff L ∈∼ Λ. A context Λ is contradictory iff it contains a rewrite literal that
is contradictory with Λ. For instance, if Λ = {f(x)→ a, f(x) 6→ x} then f(y) 6→ a and
f(y) → y are contradictory with Λ, while f(a) → a, a 6→ f(x) and f(x) → y are not.
From now on we assume that all contexts are non-contradictory. This is justified by
the fact that the ME+Sup calculus defined below can derive non-contradictory contexts
only.

A context stands for its produced literals, defined as follows:

Definition 3.1 (Productivity [BT03]) Let L be a rewrite literal and Λ a context. A
rewrite literal K produces L in Λ iff K & L and there is no K ′ ∈ Λ such that K � K ′ &
L.6 The context Λ produces L iff it contains a literal K that produces L in Λ, and Λ
produces a multiset Γ of rewrite literals iff Λ produces each L ∈ Γ.

For instance, the context Λ above produces f(b) → a, f(a) → a and f(a) 6→ a, but Λ
produces neither f(a)→ b nor a→ f(x).

For the model construction in Section 7 we will need the set of positive ground
rewrite rules produced by Λ, ΠΛ := {l → r | Λ produces l→ r and l→ r is ground}.
For instance, if Λ = {f(x)→ x} and Σ consists of a constant a and the unary function
symbol f then ΠΛ = {f(a) → a, f(f(a)) → f(a), . . .}. We note that productivity of
rewrite literals corresponding to split atoms only is relevant for the calculus.

4 Constrained Clauses

Let C = L1 ∨ · · · ∨Ln be a clause, let Γ = {K1, . . . ,Km} be a multiset of rewrite literals
such that no Ki is of the form x → t, where x is a variable and t is a term. The
expression C ·Γ is called a constrained clause (with constraint Γ), and we generally write
C ·K1, . . . ,Km instead of C · {K1, . . . ,Km}. The notation C ·Γ,K means C ·Γ ∪ {K}.7

Applying a substitution σ to C · Γ, written as (C · Γ)σ, means to apply σ to C and
all literals in Γ. A constrained clause C · Γ is ground iff both C and Γ are ground. If γ
is a substitution such that (C · Γ)γ is ground, then (C · Γ)γ is called a ground instance
of C ·Γ (via γ). For a set of constrained clauses Φ, Φgr is the set of all ground instances
of all elements in Φ.

Constraints are compared in a similar way as clauses by taking the multiset exten-
sion of a (any) total ordering on ground rewrite literals. Constrained clauses then are

6In [BT03] the first condition is replaced by the stronger condition “K is an msg of L in Λ”, where K
is a most specific generalization (msg) of L in Λ iff K & L and there is no K′ ∈ Λ such that K � K′ & L.
Working with the stated condition is somewhat simpler and achieves the same for all purposes.

7As will become clear later, literals x→ t can never occur in constraints, because, in essence, paramod-
ulation into variables is unnecessary.

6

compared lexicographically, using first the clause ordering introduced earlier to compare
the clause components, and then using the ordering on constraints. Again we use the
symbol � to denote this (strict) ordering on constrained clauses. It follows with well-
known results that � is total on ground constrained clauses. Observe that this definition
has the desirable property that proper subsumption among constrained clauses is always
order-decreasing (the subsuming constrained clause is smaller).

For the soundness proof of ME+Sup we need the clausal form of a constrained clause
C ·Γ = L1∨· · ·∨Lm ·l1 → r1, . . . , lk → rk, lk+1 6→ rk+1, . . . , ln 6→ rn, which is the ordinary
clause L1 ∨ · · · ∨ Lm ∨ l1 6≈ ri ∨ · · · ∨ lk 6≈ rk ∨ lk+1 ≈ rk+1 ∨ · · · ∨ ln ≈ rn and which
we denote by (C · Γ)c. From a completeness perspective, however, a different reading of
constrained clauses is appropriate. The clause part C of a (ground) constrained clause
C · Γ is evaluated in an E-interpretation I, whereas the literals in Γ are evaluated wrt.
a context Λ in terms of productivity. The following definition makes this precise.

We say that a ground constraint Γ consists of split rewrite literals iff l ≈ r is a split
atom and l � r, for every l → r ∈ Γ or l 6→ r ∈ Γ. A possibly non-ground constraint Γ
consists of split rewrite literals if some ground instance of Γ does.

Definition 4.1 (Satisfiaction of Constrained Clauses) Let C · Γ be a ground constrained
clause, Λ a context, and I an E-Interpretation. We say that Λ satisfies Γ and write
Λ |= Γ iff Γ consists of split rewrite literals and Λ produces Γ. We say that the pair
(Λ, I) satisfies C · Γ and write Λ, I |= C · Γ iff Λ 6|= Γ or I |= C.

The pair (Λ, I) satisfies a possibly non-ground constrained clause (set) F , written as
Λ, I |= F iff (Λ, I) satisfies all ground instances of (all elements in) F . For a set of
constrained clauses Φ we say that Φ entails C · Γ wrt. Λ, and write Φ |=Λ C · Γ iff for
every E-interpretation I it holds Λ, I 6|= Φ or Λ, I |= C · Γ.

The definitions above are also applied to pairs (Λ, R), where R is a rewrite system,
by implicitly taking (Λ, R?). Indeed, in the main applications of Definition 4.1 such a
rewrite system R will be determined by the model construction in Section 7 below.

Example 4.2 Let Λ = {f(x) → x, f(c) 6→ c}, R = {f(a) → a, f(b) → b} and C · Γ =
f(f(a)) ≈ x · f(x) → x. Let γa = {x 7→ a}, γb = {x 7→ b} and γc = {x 7→ c}. Suppose
that all (ground) atoms are split atoms. Notice that Γγa, Γγb and Γγc consist of split
rewrite literals. Then, R |= Γγa, as Λ produces {f(a) → a} and so we need to check
R? |= f(f(a)) ≈ a, which is the case, to conclude Λ, R |= (C · Γ)γa. As R |= Γγb but
R? 6|= f(f(a)) ≈ b we have Λ, R 6|= (C · Γ)γa. Finally, Λ does not produce {f(c) → c},
and with Λ 6|= Γγc it follows Λ, R |= (C · Γ)γc

7

5 Inference Rules on Constrained Clauses

We are going to define several inference rules on constrained clauses, which will be
embedded into the ME+Sup calculus below.

Ref
s 6≈ t ∨ C · Γ

(C · Γ)σ

where (i) σ is a mgu of s and t, and (ii) (s 6≈ t)σ is maximal in (s 6≈ t ∨ C)σ.
The next three rules combine a rewrite literal, which will be taken from a current

context, and a constrained clause, which will be taken from a current clause set.

U-Sup-Neg
l→ r s[u]p 6≈ t ∨ C · Γ
(s[r]p 6≈ t ∨ C · Γ, l→ r)σ

where (i) σ is a mgu of l and u, (ii) u is not a variable, (iii) (l ≈ r)σ is a split atom, (iv)
rσ 6� lσ, (v) tσ 6� sσ, and (vi) (s 6≈ t)σ is maximal in (s 6≈ t ∨ C)σ.

U-Sup-Pos
l→ r s[u]p ≈ t ∨ C · Γ
(s[r]p ≈ t ∨ C · Γ, l→ r)σ

where (i) σ is a mgu of l and u, (ii) u is not a variable, (iii) (l ≈ r)σ is a split atom, (iv)
rσ 6� lσ, and if (s ≈ t)σ is a split atom then (v-a) (s ≈ t)σ is maximal in (s ≈ t ∨ C)σ
else (v-b) tσ 6� sσ and (s ≈ t)σ is strictly maximal in (s ≈ t ∨ C)σ, and (vi) if lσ = sσ
then rσ 6� tσ.

U-Sup-Pos and U-Sup-Neg are the only rules that create new rewrite literals (l→ r)σ
in the constraint part (Sup-Neg and Sup-Pos below only merge existing constraints).
Notice that because u is not a variable, in both cases lσ is not a variable, even if l is. It
follows easily that all expressions C ·Γ derivable by the calculus are constrained clauses.

Neg-U-Res
¬A s ≈ t ∨ C · Γ

(C · Γ, s 6→ t)σ

where ¬A is a pseudo literal ¬x or a negative rewrite literal l 6→ r, and (i) (s ≈ t)σ is a
split atom, (ii) σ is a mgu of A and s → t, (iii) (s ≈ t)σ is a split atom, (iv) tσ 6� sσ,
and (v) (s ≈ t)σ is maximal in (s ≈ t ∨ C)σ.

The following three rules are intended to be applied to clauses from a current clause
set. To formulate them we need one more definition: let l ≈ r be an equation and
C = x1 ≈ t1 ∨ · · · ∨ xn ≈ tn a (possibly empty) clause of positive literals, where xi is a
variable and ti a term, for all i = 1, . . . , n. We say that a substitution π merges C with
l ≈ r iff π is an mgu of l, x1, . . . , xn, rπ 6� lπ, and tiπ 6� lπ.

Sup-Neg
l ≈ r ∨ C ′ · Γ′ s[u]p 6≈ t ∨ C · Γ

(s[r]p 6≈ t ∨ C ∨ C ′ · Γ,Γ′)σπ

8

where (i) σ is a mgu of l and u, (ii) u is not a variable, (iii) π merges x1 ≈ t1∨· · ·∨xn ≈
tn ⊆ C ′σ with (l ≈ r)σ, (iv) {x1, . . . , xn} ⊆ Var(Γ′σ), (v) (l ≈ r)σ is a superposition
atom, (vi) rσπ 6� lσπ, (vii) (l ≈ r)σπ is strictly maximal in (l ≈ r∨C ′)σπ, (viii) tσ 6� sσ,
and (ix) (s 6≈ t)σ is maximal in (s 6≈ t ∨ C)σ.

The need for merge substitutions is demonstrated in Example 7.5 below.

Sup-Pos
l ≈ r ∨ C ′ · Γ′ s[u]p ≈ t ∨ C · Γ

(s[r]p ≈ t ∨ C ∨ C ′ · Γ,Γ′)σπ

where (i) σ is a mgu of l and u, (ii) u is not a variable, (iii) π merges x1 ≈ t1∨· · ·∨xn ≈
tn ⊆ C ′σ with (l ≈ r)σ, (iv) {x1, . . . , xn} ⊆ Var(Γ′σ), (v) (l ≈ r)σ is a superposition
atom, (vi) rσπ 6� lσπ, (vii) (l ≈ r)σπ is strictly maximal in (l ≈ r ∨ C ′)σπ, and if
(s ≈ t)σ is a split atom then (viii-a) (s ≈ t)σ is maximal in (s ≈ t ∨ C)σ else (viii-b)
tσ 6� sσ and (s ≈ t)σ is strictly maximal in (s ≈ t ∨ C)σ.

Notice that (s ≈ t)σ could be both a split atom and a superposition atom. In this
case the weaker condition (viii-a) is used to take care of a ground instance of a Sup-Pos
inference applied to a split atom, which requires the weaker condition.

In both Sup-Neg and Sup-Pos inference rules we assume the additional condition
Cσπ 6� Dσπ, where by C and D we mean their left and right premise, respectively.

Fact
l ≈ r ∨ s ≈ t ∨ C · Γ

(l ≈ t ∨ r 6≈ t ∨ C · Γ)σ

where (i) σ is an mgu of l and s, (ii) (l ≈ r)σ is a superposition atom, (iii) (l ≈ r)σ is
maximal in (l ≈ r ∨ s ≈ t ∨ C)σ, (iv) rσ 6� lσ, and (v) tσ 6� sσ.

In each of the inference rules above we assume the additional condition that Γσ (Γσπ
and Γ′σπ in case of Sup-Neg or Sup-Pos) consists of split rewrite literals.

An inference system ι is a set of inference rules. By an ι inference we mean an
instance of an inference rule from ι such that all conditions are satisfied. An inference
is ground if all its premises and the conclusion are ground.

The base inference system ιBase consists of Ref, Fact, U-Sup-Neg, U-Sup-Pos, Neg-U-
Res, Sup-Neg and Sup-Pos. If from a given ιBase inference a ground ιBase inference results
by applying a substitution γ to all premises and the conclusion, we call the resulting
ground inference a ground instance via γ (of the ιBase inference). This is not always
the case, as, e.g., ordering constraints can become unsatisfiable after application of γ.
An important consequence of the ordering restrictions stated with the inference rules is
that the conclusion of a ground ιBase inference is always strictly smaller than the right
or only premise.

6 Inference Rules on Sequents

Sequents are the main objects manipulated by the ME+Sup calculus. A sequent is a
pair Λ ` Φ where Λ is a context and Φ is a set of constrained clauses. The following

9

inference rules extend the inference rules ιBase above to sequents.

Deduce
Λ ` Φ

Λ ` Φ, C · Γ

if one of the following cases applies:

• C · Γ is the conclusion of a Ref or Fact inference with a premise from Φ.

• C · Γ is the conclusion of a U-Sup-Neg, U-Sup-Pos or Neg-U-Res inference with a
right premise from Φ and a left premise K ∈ Λ that produces Kσ in Λ, where σ is
the mgu used in that inference.

• C · Γ is the conclusion of a Sup-Neg or Sup-Pos inference with both premises from
Φ.

In each case the second or only premise of the underlying ιBase inference is called the
selected clause (of a Deduce inference). In inferences involving two premises, a fresh
variant of the, say, right premise is taken, so that the two premises are variable disjoint.

Split
Λ ` Φ

Λ, K ` Φ Λ, K ` Φ

if there is a constrained clause � · Γ ∈ Φ such that (i) K ∈ Γ, (ii) s ≈ t is a split atom,
where K = s → t or K = s 6→ t, and (iii) neither K nor K is contradictory with Λ. A
Split inference is productive if Λ produces Γ; the clause � ·Γ is called the selected clause
(of the Split inference).

The intuition behind Split is to make a constrained empty clause � ·Γ true, which is
false when Λ produces Γ (in the sense of Definition 4.1). This is achieved by adding K
to the current context. For example, if Λ = {P (a, y),¬P (x, b)} and � · Γ = � · P (a, b)
then a (productive) Split inference will give {P (a, y),¬P (x, b),¬P (a, b)}, which no longer
produces P (a, b). Intuitively, the calculus tries to “repair” the current context towards
a model for a constrained empty clause.

Notice that a Split inference can never add a rewrite to a context that already contains
a variant of it or its complement, as this would contradict condition (iii).8 Because of
the latter property the calculus will never derive contradictory contexts.

Close
Λ ` Φ

Λ ` Φ,� · ∅

if there is a constrained clause � · Γ ∈ Φ such that L ∈∼ Λ for every L ∈ Γ. The clause
� · Γ is called the selected clause (of a Close inference) and the variants of the L’s in Λ
are the closing literals. A sequent Λ ` Φ is closed if Φ contains � · ∅. The purpose of
Close is to abandon a sequent that cannot be “repaired”.

8The Deduce rule and the Close rule could be strengthened to exclude adding variants to the clause
sets in the conclusion. We ignore this (trivial) aspect.

10

The ιME+Sup inference system consists of the rules Deduce, Split and Close.
In the introduction we mentioned that the ME+Sup calculus can be configured to

obtain a pure Superposition or a pure Model Evolution calculus (with equality). For the
former, every ground atom is to be labelled as a superposition atom. Then, the only
inference rules in effect are Ref, Sup-Neg, Sup-Pos and Fact, all of which are standard
inference rules of the Superposition calculus. Furthermore, under the reasonable as-
sumption that the input clauses are constraint-free, all derivable contexts will be {¬x},
and also the constraints in all derivable clauses will be empty. In consequence, not even
Close is applicable (unless the clause set in the premise already contains � · ∅). In con-
trast, if all atoms are labelled as split atoms, then the only inference rules in effect are
Ref,U-Sup-Neg, U-Sup-Pos, Neg-U-Res, Split and Close. The resulting calculus is similar
to the MEE calculus [BT05] but not quite the same. On the one hand, MEE features
universal variables, a practically important improvement, which ME+Sup does not (yet)
have. On the other hand, MEE needs to compute additional unifiers, for instance in the
counterpart to the Close rule, which are not necessary in ME+Sup.

7 Model Construction

To obtain the completeness result for ME+Sup we associate to a sequent Λ ` Φ a
convergent left-reduced rewrite system RΛ ` Φ. The general technique is taken from
the completeness proof of the Superposition calculus [BG98, NR95] and adapted to our
needs. One difference is that ME+Sup requires the construction of a fully reduced rewrite
system for its split atoms, whereas for the superposition atoms a left-reduced rewrite
system is sufficient. Another difference is that certain aspects of lifting must be reflected
already for the model generation. For the latter, we need a preliminary definition.

Definition 7.1 (Relevant Instance wrt. (Λ, R)) Let Λ be a context, R a rewrite system,
and γ a ground substitution for a constrained clause C · Γ. We say that (C · Γ)γ9 is a
relevant instance (of C · Γ) wrt. (Λ, R) iff

(i) Γγ consists of rewrite split literals,

(ii) Λ produces Γ and Λ produces Γγ by the same literals (see below), and

(iii) (Var(C) ∩ Var(Γ))γ is irreducible wrt. R.

In the previous definition, item (ii) is to be understood to say that, for each L ∈ Γ, there
is a literal K ∈ Λ that produces both L and Lγ in Λ.

Notice that in order for C ·Γ to have relevant instances it is not necessary that C ·Γ
is taken from a specific clause set. Indeed, conclusions of inference rules may well have
relevant instances but need not be contained in a clause set as long as inferences are
universally redundant (see below). Notice also that for a clause with an empty constraint
all its instances are relevant.

9Strictly speaking, the definition works with pairs (C ·Γ, γ) instead of ground instances (C ·Γ)γ, but
this causes no problems as γ will always be clear from the context. Similarly in other definitions below.

11

Example 7.2 If Λ = {P (x), a→ b,¬P (b)}, R = {a→ b} and C ·Γ = x ≈ b∨x ≈ d ·P (x)
then the substitution γ = {x 7→ a} gives a ground instance that satisfies condition (ii)
but not (iii). With the substitution γ = {x 7→ c} both (ii) and (iii) are satisfied, and
with γ = {x 7→ b} the condition (ii) is not satisfied but (iii) is. If Λ = {P (a)} then
� · P (x) does not have relevant instances (although Λ produces the ground constraint
P (a)) because Λ does not produce P (x). The calculus needs to make sure that such
“irrelevant” constrained clauses need not be considered, as (in particular) Close cannot
be applied to, say, {P (a)} ` � · P (x) although {P (a)}, ∅ 6|= � · P (x).

For a given sequent Λ ` Φ, where Φ does not contain � · ∅, we define by induction
on the clause ordering � sets of rewrite rules εC and RC , for every C ∈ Φgr ∪ ΠΛ. Here,
for the purpose of comparing (positive) rewrite literals, l→ r is taken as the constrained
clause l ≈ r · ⊥, where ⊥ is a fresh symbol that is considered smaller than the empty
multiset. This way, � is a total ordering on Φgr ∪ ΠΛ. For instance (l ≈ r · ∅) � l → r
as (l ≈ r · ∅) � (l ≈ r · ⊥), as ∅ � ⊥.

Assume that εD has already been defined for all D ∈ Φgr ∪ ΠΛ with C � D and let
RC =

⋃
C�D εD. The set εC is defined differently depending on the type of C. If C is

rewrite literal l→ r ∈ ΠΛ then let εl→r = {l→ r} if

1. l ≈ r is a split atom,

2. l � r, and

3. l and r are irreducible wrt. Rl→r.

Otherwise εl→r = ∅. If C is a constrained clause C · Γ ∈ Φgr then let εC·Γ = {s→ t} if

1. C = s ≈ t ∨D,

2. s ≈ t is strictly maximal in C,

3. s ≈ t is a superposition atom,

4. s � t,

5. C · Γ is a relevant instance of a constrained clause C ′ · Γ′ ∈ Φ wrt. (Λ, RC·Γ),

6. R?C·Γ 6|= C,

7. (RC·Γ ∪ {s→ t})? 6|= D, and

8. s is irreducible wrt. RC·Γ.

Otherwise εC·Γ = ∅.
Finally, R =

⋃
C εC . If εl→r = {l → r} then we say that l → r generates l → r in R.

If εC·Γ = {l→ r} then we say that C ·Γ generates l→ r in R via C ′ ·Γ′. Often we write
RΛ ` Φ instead of R to make clear that R is constructed from Φgr ∪ ΠΛ.

It is not difficult to show that R is a left-reduced rewrite system and the rules
contributed by ΠΛ are even fully reduced wrt. R. Since � is a well-founded ordering, R

12

is a convergent rewrite system. With well-known results it follows that satisfaction of
ground literals s ≈ t (or s 6≈ t) in R? can be decided by checking if the normal forms of
s and t wrt. R are the same.

Notice that the evaluation of condition 5 for εC·Γ refers to the context Λ, which is
fixed prior to the model construction, and the rewrite system RC·Γ constructed so far.
The definition can be seen to work in a hierarchical way, by first building the set of those
constrained clauses from Φgr whose constraints are produced in Λ, and then generating
R from that set, which involves checking irreducibility of substitutions wrt. RC·Γ.

With respect to split atoms, the (completeness proof of the) calculus needs to consider
those that are true because they are generated, and those that are false and irreducible.
The following lemma provides a handle in such cases in terms of the “syntactic” concept
of productivity.

Lemma 7.3 Let D ∈ Φgr ∪ ΠΛ and l ≈ r a ground split atom such that l � r. Then

(i) if l→ r ∈ R then Λ produces l→ r, and

(ii) if D � l→ r, and l and r are irreducible wrt. RD then Λ produces l 6→ r.

Proof. Concerning (i), if l → r ∈ R then this is because l → r ∈ ΠΛ generates l → r,
and then Λ produces l→ r by definition of ΠΛ.

Concerning (ii), suppose that l and r are irreducible wrt. RD. If l→ r were contained
in ΠΛ, then either l → r would be generated in RD, but then l would be reducible by
l → r ∈ RD, or l → r would not be generated in RD, but this is only possible if l or r
is reducible by Rl→r, and since Rl→r ⊆ RD, it would again be reducible by RD. Hence
l → r /∈ ΠΛ. Thanks to the presence of the pseudo-literal ¬x in every context, it is not
difficult to see that every context produces K or K, for every literal K. Thus, with Λ
not producing l→ r conclude that Λ produces l 6→ r.

Example 7.4 Let Λ = {a → x, b → c, a 6→ c}, Φ = ∅ and assume that all equations are
split atoms. With a � b � c the induced rewrite system R is {b → c}. To see why,
observe that the rule a→ c is not included in R, as Λ does not produce a→ c, and that
a→ b, although produced in Λ, is reducible by the smaller rule b→ c. Had we chosen to
omit in the definition of εC·Γ the condition “r is irreducible wrt. Rl→r” 10 the construction
would have given R = {a → b, b → c}. This leads to the undesirable situation that a
constrained clause, say, a 6≈ c · ∅ is falsified by R?. But the calculus cannot modify Λ
to revert this situation, and to detect the inconsistency (ordered) paramodulation into
variables would be needed.

Example 7.5 Let a � b � c, Λ = {P (x),¬P (b),¬P (c)} and C · Γ = y ≈ b ∨ x ≈ c · P (x)
be the only clause in Φ. Then the instance a ≈ b ∨ a ≈ c · P (a) generates a → b in R.
This is, because a ≈ b ∨ a ≈ c · P (a) is relevant instance of y ≈ b ∨ x ≈ c · P (x) wrt.

10This condition is absent in the model construction for superposition atoms. Its presence explains
why paramodulation into smaller sides of positive split literals in clauses is necessary.

13

(Λ, RC·Γ) = (Λ, ∅). Let γ = {x 7→ a, y 7→ a} be the corresponding ground substitution.
Now, a (ground) inference with (C · Γ)γ as the left premise and a relevant instance
of a clause as the right premise will possibly not preserve relevancy. This is, because
the conclusion, say, Cγ, can be bigger than the left premise (C · Γ)γ (even if the right
premise is bigger than the left premise, which is safe to assume) and this way xγ could
be reducible wrt. RCγ . For instance, if the right premise is f(a) 6≈ f(b) ·∅ then a Sup-Neg
inference yields C = f(b) 6≈ f(b) ∨ x ≈ c · P (x). But Cγ = f(b) 6≈ f(b) ∨ a ≈ c · P (a)
is not a relevant instance wrt. Λ, as xγ = a is reducible wrt. RCγ = {a → b}. This
is a problem from the completeness perspective, because the calculus needs to reduce
relevant instances of clauses that are false (in a certain interpretation) to smaller relevant
instances. The suggested Sup-Neg step would thus not work in this case. The problem
is avoided by a different Sup-Neg inference with a merge substitution:

Sup-Neg
y ≈ b ∨ x ≈ c · P (x) f(a) 6≈ f(b) · ∅

f(b) 6≈ f(b) ∨ a ≈ c · P (a)

where σ = {y 7→ a} and π = {x 7→ a}. Then, f(b) 6≈ f(b) ∨ a ≈ c · P (a) is a relevant
instance (of itself) wrt. Λ. Situations like the one above are the only critical ones,
and relevancy can always be preserved by a merge substitution. The following lemma
provides a formal account.

Lemma 7.6 (ιBase-inferences Preserve Relevant Instances) Let Λ ` Φ be a sequent and
assume an ιBase inference with right (or only) premise C · Γ, conclusion C ′ · Γ′, and a
ground instance via γ of the ιBase inference such that

(i) (C · Γ)γ is a relevant instance of C · Γ wrt. (Λ, R(C·Γ)γ),

(ii-a) in case of Sup-Neg or Sup-Pos, the left premise (l ≈ r ∨ C ′′ · Γ′′)γ generates
(l → r)γ in RΛ ` Φ via l ≈ r ∨ C ′′ · Γ′′ (the left premise of the non-ground
inference),

(ii-b) in case of U-Sup-Neg or U-Sup-Pos, the left premise (l → r)γ generates the
rule (l→ r)γ in RΛ ` Φ, and

(ii-c) in case of Neg-U-Res, the left premise is ¬Aγ = (s 6→ t)γ and sγ and tγ are
irreducible wrt. R(C·Γ)γ .

Then, the conclusion (C ′ · Γ′)γ of the ground inference is a relevant instance of C ′ · Γ′
wrt. (Λ, R(C·Γ)γ), for some possibly different merge substitution in case of a Sup-Neg or
Sup-Pos inference.

A proof is in the appendix.
We conclude this section with important monotonicity results of the model construc-

tion.

Lemma 7.7 If s ≈ t ∨ D · Γ generates s → t in R then R? |= s ≈ t and R? 6|= D, and
R?D |= s ≈ t and R?D 6|= D for every D ∈ Φgr ∪ ΠΛ such that D � s ≈ t ∨D · Γ.

14

Proof. It can be shown that the rewrite system R is left-reduced and ordered, further-
more the left hand side of every rewrite rule in R \ (Rs≈t∨D·Γ ∪ {s→ t}) is larger than
every term occurring in a positive literal of D, hence these rules cannot be used to rewrite
terms in positive literals ofD. Therefore, if a literal ofD is false in (Rs≈t∨D·Γ ∪ {s→ t})?,
then it is false in R?. The same arguments apply for the second part of the lemma state-
ment. For that, it suffices to observe that RD ⊇ Rs≈t∨D·Γ as D � s ≈ t ∨D · Γ.

Lemma 7.8 If R?C·Γ |= C then R? |= C and R?D |= C for every D ∈ Φgr ∪ ΠΛ such that
D � C · Γ.

Proof. The left hand side of every rewrite rule in R \ RC·Γ is larger than every term
occurring in a negative literal of C, hence these rules cannot be used to rewrite terms
in negative literals of C. Therefore, if a literal of C is true in R?C·Γ, then it is true in
R?. The same arguments apply for the second part of the lemma statement. For that,
it suffices to observe that RD ⊇ RC·Γ as D � C · Γ.

Corollary 7.9 If Λ, RC·Γ |= C · Γ then Λ, R |= C · Γ and Λ, RD |= C · Γ for every
D ∈ Φgr ∪ ΠΛ such that D � C · Γ.

Proof. Suppose Λ, RC·Γ |= C ·Γ. If Λ 6|= Γ the claim is trivial. Hence suppose Λ |= Γ. By
definition, R?C·Γ |= C. With Lemma 7.8 conclude R? |= C and, trivially, Λ, R |= C · Γ.
Similarly for the second part.

8 Redundancy, Saturation and Static Completeness

To define concepts of redundancy we need a specific notion of relevant instances that
takes the model construction into account. We extend Definition 7.1 and say that (C ·Γ)γ
is a relevant instance of C · Γ wrt. Λ iff (C · Γ)γ is a relevant instance of C · Γ wrt.
(Λ, R(C·Γ)γ). Relevancy of an instance (C · Γ)γ wrt. Λ thus does not depend on rules
from R \R(C·Γ)γ .

Definition 8.1 (Relevant Instances wrt. Λ) Let Φ be a set of constrained clauses. Define

ΦΛ = {(C · Γ)γ | C · Γ ∈ Φ and (C · Γ)γ is a relevant instance of C · Γ wrt. Λ} .

Let Λ ` Φ be a sequent and D a ground constrained clause. Define

ΦΛ
D = {C · Γ ∈ ΦΛ | D � C · Γ} .

In words, ΦΛ
D is the set of relevant instances wrt. Λ of all constrained clauses from Φ

that are all smaller wrt. � than D.

Definition 8.2 (Redundant Constrained Clause) Let Λ ` Φ be a sequent and C · Γ a
ground constrained clause. We say that C · Γ is redundant wrt. Λ ` Φ and D iff
ΦΛ
D |=Λ C · Γ, and we say that C · Γ is redundant wrt. Λ ` Φ iff C · Γ is redundant wrt.

Λ ` Φ and C · Γ.

15

In words, C · Γ is redundant wrt. Λ ` Φ and D iff C · Γ is entailed wrt. Λ by relevant
instances wrt. Λ of clauses in Φ that are smaller than D.

The following lemma provides a condition under which redundant ground instances
are not generating. Because the completeness proof needs to consider situations only
that satisfy the condition, redundant clauses can never be generating then.

Lemma 8.3 Let Λ ` Φ be a sequent and (C ·Γ)γ a ground instance of a clause C ·Γ ∈ Φ.
If (C · Γ)γ is redundant wrt. Λ ` Φ and Λ, R(C·Γ)γ |= ΦΛ

(C·Γ)γ then (C · Γ)γ does not
generate a rewrite rule in RΛ ` Φ via C · Γ.

Proof. Suppose that (C · Γ) is redundant wrt. Λ ` Φ and that Λ, R(C·Γ)γ |= ΦΛ
(C·Γ)γ .

By the definition of redundancy then ΦΛ
(C·Γ)γ |=Λ (C · Γ)γ. With Λ, R(C·Γ)γ |= ΦΛ

(C·Γ)γ it
follows Λ, R(C·Γ)γ |= (C · Γ)γ.

If (C · Γ)γ is not a relevant instance wrt. Λ, then by property 5 of the definition of
model construction (C · Γ)γ cannot generate a rewrite rule. Otherwise, by relevancy, Λ
produces Γγ and Γγ consists of split rewrite literals. In other words, Λ |= Γγ, and with
Λ, R(C·Γ)γ |= (C · Γ)γ it follows R?(C·Γ)γ |= Cγ. But then, (C · Γ)γ cannot generate a
rewrite rule according to condition 6 in the definition of model construction.

The notion of redundancy defined above is essential to prove completeness but dif-
ficult to exploit in practice (it rests on reducibility wrt. rewrite systems that are de-
termined by the limit of a derivation only). The following, related definition avoids
that.

For a context Λ let grd(Λ) denote the set of all ground literals in Λ.

Definition 8.4 (Universal Redundancy) Let Λ ` Φ be a sequent, D a ground constrained
clause, and γ a ground substitution for a constrained clause C ·Γ. We say that (C ·Γ)γ is
universally redundant wrt. Λ ` Φ and D, iff there exists an L ∈ Γ such that Lγ ∈ grd(Λ),
or there exist ground instances (Ci · Γi)γi of constrained clauses Ci · Γi ∈ Φ such that

(i) if L ∈ Γi, then L ∈ grd(Λ) or there exists a K ∈ Γ such that L ∼ K and Lγi = Kγ,

(ii) D � (Ci · Γi)γi for every i,

(iii) C1γ1 . . . Cnγn |= Cγ, and

(iv) if x ∈ Var(Ci) ∩ Var(Γi), then there exists a y ∈ Var(C) ∩ Var(Γ) such that
xγi = yγ.

We say that (C · Γ)γ is universally redundant wrt. Λ ` Φ, iff (C · Γ)γ is universally
redundant wrt. Λ ` Φ and (C · Γ)γ, and we say that C · Γ is universally redundant wrt.
Λ ` Φ iff (C · Γ)γ is universally redundant wrt. Λ ` Φ, for every ground substitution
γ for C · Γ.

For instance, when A is a ground literal, any (possibly non-ground) clause of the form
C ·A,Γ is universally redundant wrt. every Λ ` Φ such that A ∈ Λ. Dually, C ·A,Γ is

16

universally redundant wrt. every Λ ` Φ such that A ∈ Λ and C ·Γ ∈ Φ. Correspondingly,
the simplification rule defined below can be used to delete C ·A,Γ if A ∈ Λ, and if A ∈ Λ
then C · A,Γ can be simplified to C · Γ. This generalizes corresponding simplification
rules by unit clauses in the propositional DPLL-procedure.

Also, a constrained clause C ·Γ′ is universally redundant wrt. any sequent containing
a constrained clause C · Γ such that Γ ⊂ Γ′. This can be exploited to finitely bound
the number of derivable constrained clauses under certain conditions. For instance, if
the clause parts cannot grow in length, e.g., by disabling superposition by labelling all
atoms as split atoms, and if the term depth is limited, too, then ME+Sup derivations
can be finitely bounded. In other words, ME+Sup can be used as a decision procedure
for Bernays-Schönfinkel formulas with equality.

Observe that Definition 8.4 refers to a context Λ only be testing if ground rewrite
literals are contained in it, a property that is preserved as Λ grows. We obtain the
following general result.

Lemma 8.5 If C ·Γ is universally redundant wrt. Λ ` Φ, Λ′ ⊇ Λ, and Φ′ is obtained from
Φ by deleting constrained clauses that are universally redundant wrt. Λ ` Φ and/or by
adding arbitrary constrained clauses, then C · Γ is universally redundant wrt. Λ′ ` Φ′.

Proof. It is obvious from Def. 8.4 that a clause that is universally redundant wrt. Λ ` Φ
remains universally redundant if arbitrary constrained clauses are added to Φ or if literals
are added to Λ.

To prove that a clause that is universally redundant wrt. Λ ` Φ remains universally
redundant if universally redundant clauses are deleted from Φ, it suffices to show that
the clauses Ci · Γi ∈ Φ in Definition 8.4 can always be chosen in such a way that they
are not themselves universally redundant: Suppose that a ground constrained clause
(C · Γ)γ is universally redundant wrt. Λ ` Φ and D. If there exists an L ∈ Γ such
that Lγ ∈ grd(Λ), then deleting clauses from Φ does not change anything. Otherwise let
{ (Ci · Γi)γi | 1 ≤ i ≤ n } be a minimal set of ground instances of clauses in Φ (wrt. the
multiset extension of the clause ordering) that satisfies the conditions of Definition 8.4.
Suppose that one of the (Ci ·Γi)γi, say (C1 ·Γ1)γ1, is universally redundant itself. Then
either there exists an L ∈ Γ1 such that Lγ1 ∈ grd(Λ), but since Λ is assumed to be non-
contradictory, this contradicts the fact that L ∈ grd(Λ), or there exist ground instances
(C1i·Γ1i)γ1i of constrained clauses C1i·Γ1i ∈ Φ that satisfy the conditions of Definition 8.4
for (C1 · Γ1)γ1. But then { (Ci · Γi)γi | 2 ≤ i ≤ n } ∪ { (C1i · Γ1i)γ1i | 1 ≤ i ≤ m } would
also satisfy the conditions of Definition 8.4 for (C · Γ)γ, contradicting the minimality of
{ (Ci · Γi)γi | 1 ≤ i ≤ n }.

We are going to establish some results that relate redundancy and universal redundancy.

Lemma 8.6 If (C · Γ)γ is universally redundant wrt. Λ ` Φ and D, and (C · Γ)γ is a
relevant instance of C · Γ wrt. (Λ, RD), then (C · Γ)γ is redundant wrt. Λ ` Φ and D.

17

Proof. Assume that (C ·Γ)γ is universally redundant wrt. Λ ` Φ and D and that (C ·Γ)γ
is a relevant instance of C · Γ wrt. (Λ, RD). Then Λ produces Γ and Γγ by the same
literals. Consequently, there cannot exist a K ∈ Γ such that Kγ ∈ grd(Λ). By property
(iii) of universal redundancy, there are ground instances (Ci ·Γi)γi of constrained clauses
Ci · Γi ∈ Φ such that C1γ1 . . . Cnγn |= Cγ; from property (i) we conclude that (C · Γ)γ
is entailed by {(C1 · Γ1)γ1, . . . , (Cn · Γn)γn} wrt. Λ, i.e., (C1 · Γ1)γ1, . . . , (Cn · Γn)γn |=Λ

(C · Γ)γ. It remains to show that (Ci · Γi)γi is a relevant instance of (Ci · Γi) wrt. Λ, for
all i = 1, . . . , n. First, by property (i) again we get that Λ produces Γi and Γiγi by the
same literals. Second, because (C ·Γ)γ is a relevant instance of C ·Γ wrt. (Λ, RD), yγ is
irreducible wrt. RD for every y ∈ Var(C) ∩ Var(Γ). By property (ii), each (Ci · Γi)γ is
smaller than D. It follows R(Ci·Γi)γ ⊆ RD. By property (iv) then, xγi is irreducible wrt.
R(Ci·Γi)γ for every x ∈ Var(Ci) ∩ Var(Γi), which suffices to complete the proof.

Corollary 8.7 If C ·Γ is universally redundant wrt. Λ ` Φ, then every relevant instance
of C · Γ wrt. Λ is redundant wrt. Λ ` Φ.

Proof. Suppose that C · Γ is universally redundant wrt. Λ ` Φ, i.e., that (C · Γ)γ is
universally redundant wrt. Λ ` Φ and (C ·Γ)γ, for every ground substitution γ for C ·Γ.
Let γ be any ground substitution for C · Γ such that (C · Γ)γ is a relevant instance of
C · Γ wrt. Λ. By setting D = (C · Γ)γ the result follows immediately from immediate
from Lemma 8.6.

The restriction to relevant instances in Corollary 8.7 can not be dropped. For example,
with C · Γ = y ≈ b ∨ y ≈ b · P (y) and γ = {y 7→ a} the instance (C · Γ)γ is universally
redundant wrt. P (x) ` (x ≈ b · P (x)), a ≈ c (take the instance a ≈ b · P (a) of
x ≈ b · P (x) to show that), but (C · Γ)γ is not redundant wrt. this sequent, as the
instance a ≈ b · P (a) needed to establish that, is not a relevant instance, as xγ = a is
reducible wrt. a→ c ∈ Ra≈b·P (a).

Lemma 8.3 also holds in terms of universal redundancy.

Corollary 8.8 Let Λ ` Φ be a sequent and (C ·Γ)γ a ground instance of a clause C ·Γ ∈ Φ.
If (C · Γ)γ is universally redundant wrt. Λ ` Φ and Λ, R(C·Γ)γ |= ΦΛ

(C·Γ)γ then (C · Γ)γ
does not generate a rewrite rule in RΛ ` Φ via C · Γ.

Proof. Suppose that (C · Γ)γ is universally redundant wrt. Λ ` Φ. If (C · Γ)γ is not
a relevant instance wrt. Λ, then by property 5 of the definition of model construction
(C · Γ)γ cannot generate a rewrite rule. If (C · Γ)γ is a relevant instance wrt. Λ, then
Corollary 8.7 (C · Γ)γ is redundant wrt. Λ ` Φ. Now apply Lemma 8.3.

The following definition exploits the notion of universal redundancy in universally
redundant inferences.

Definition 8.9 (Universally Redundant ιME+Sup Inference) Let Λ ` Φ and Λ′ ` Φ′ be
sequents. A ιME+Sup inference with premise Λ ` Φ and selected clause C · Γ ∈ Φ
is universally redundant wrt. Λ′ ` Φ′ iff for every ground substitution γ, (C · Γ)γ is

18

universally redundant wrt. Λ′ ` Φ′, or the following holds, depending on the inference
rule applied:

Deduce: One of the following holds:

(i) Applying γ to all premises and the conclusion C ′ · Γ′ of the underlying ιBase

inference does not result in a ground instance via γ of this ιBase inference.

(ii) (C ′ · Γ′)γ is universally redundant wrt. Λ′ ` Φ′ and (C · Γ)γ.

(iii) In case of Sup-Neg or Sup-Pos, where C ′′ · Γ′′ is the left premise, (C ′′ · Γ′′)γ is
universally redundant wrt. Λ′ ` Φ′.

Split: C · Γ = � · Γ and Λ′ does not produce Γ.

Close: C · Γ = � · ∅ ∈ Φ′.

With a view to implementation, it is important to know that adding the conclusion of a
Deduce inference to the current clause set renders the inference universally redundant.
This follows from the following proposition.

Proposition 8.10 Let Λ ` Φ be a sequent, C · Γ and C ′ · Γ′ be two constrained clauses
with C · Γ ∈ Φ, and γ a ground substitution. If (C ′ · Γ′)γ � (C · Γ)γ then (C · Γ)γ is
universally redundant wrt. Λ ` Φ and (C ′ · Γ′)γ.

Proof. Assume (C ′ · Γ′)γ � (C · Γ)γ. By taking D = (C ′ · Γ′)γ, n = 1, C1 · Γ1 = C · Γ
and γ1 = γ in Definition 8.4 the result follows trivially.

The following lemma will be used later to prove completeness in presence of a sim-
plification rule, which permits to delete constrained clauses from the current sequent.

Lemma 8.11 If a Deduce inference is universally redundant wrt. Λ ` Φ, Λ′ ⊇ Λ, and Φ′

is obtained from Φ by deleting constrained clauses that are universally redundant wrt.
Λ ` Φ and/or by adding arbitrary constrained clauses, then it universally redundant
wrt. Λ′ ` Φ′.

Proof. Analogously to the proof of Lemma 8.5.

Summarizingly, and referring to the notion of derivation trees formally defined in
Section 9 below, the results so far indicate that a constrained clause that is universally
redundant at some node of the derivation tree will remain universally redundant in all
successor nodes (by Lemma 8.5), that all its relevant ground instances are redundant
(and therefore cannot be minimal counterexamples in the model construction, by Corol-
lary 8.7), and that its ground instances cannot generate rewrite rules (by Corollary 8.8).
Consequently, a universally redundant clause can be deleted from a clause set without
endangering refutational completeness. We emphasize that for clauses with empty con-
straints, universal redundancy coincides with the classical notion of redundancy for the
Superposition calculus.

19

Definition 8.12 (Saturated Sequent) A sequent Λ ` Φ is saturated iff every ιME+Sup

inference with premise Λ ` Φ is universally redundant wrt. Λ ` Φ.

The results so far allow us to establish our first main result.

Theorem 8.13 (Static Completeness) If Λ ` Φ is a saturated sequent with a non-
contradictory context Λ and � · ∅ /∈ Φ then the induced rewrite system RΛ ` Φ satisfies
all relevant instances of all clauses in Φ wrt. Λ , i.e., Λ, RΛ ` Φ |= ΦΛ. Moreover, if Ψ is
a clause set and Φ includes Ψ, i.e., {D · ∅ | D ∈ Ψ} ⊆ Φ, then R?Λ ` Φ |= Ψ.

The stronger statement Λ, RΛ ` Φ |= Φ does in general not follow, as (Λ, RΛ ` Φ) possibly
falsifies a non-relevant ground instance of a constrained clause in Φ. An example is the
sequent

Λ ` Φ = P (f(x)), f(a)→ a ` � · P (f(x)), f(x)→ x .

Observe that Close is not applicable. Further, Λ does not produce the constraint
{P (f(x)), f(x)→ x} and hence the Split application with selected clause�·P (f(x)), f(x)→
x is universally redundant wrt. Λ ` Φ. Altogether, Λ ` Φ is saturated. However,
Λ, RΛ ` Φ 6|= � · P (f(a)), f(a) → a as Λ |= {P (f(a)), f(a) → a} and no rewrite system
satisfies �. Hence Λ, RΛ ` Φ 6|= � · P (f(x)), f(x) → x. But this does not violate Theo-
rem 8.13, as � ·P (f(a)), f(a)→ a is not a relevant instance of � ·P (f(x)), f(x)→ x. Al-
though x{x 7→ a} is irreducible wrt. R�·P (f(a)),f(a)→a = ∅, Λ does not produce f(x)→ x,
and hence does not produce {P (f(x)), f(x)→ x} and {P (f(a)), f(a)→ a} by the same
literals.

Proof. Let Λ ` Φ be a saturated sequent with a non-contradictory context and suppose
� · ∅ /∈ Φ. To complete the proof of the first statement we show that every relevant
instance C · Γ of a clause in Φ wrt. Λ satisfies one of the following two properties:

(i) Λ, RC·Γ |= C · Γ.

(ii) C · Γ generates a rewrite rule in RΛ ` Φ.

Using Lemma 7.7 and Corollary 7.9 we conclude in both cases that Λ, RΛ ` Φ |= C · Γ
and Λ, RD·Γ′ |= C · Γ for every ground instance D · Γ′ � C · Γ.

Once Λ, RΛ ` Φ |= ΦΛ is established we get the second statement R?Λ ` Φ |= Ψ by the
following argumentation. Let Cγ be a ground instance of a clause C ∈ Ψ. It suffices
to show R?Λ ` Φ |= Cγ. With Definition 7.1 it follows that every ground instance of a
constrained clause with empty constraint is always relevant, for every pair (Λ, R). Hence,
and more formally, (C · ∅)γ ⊆ {D · ∅ | D ∈ Ψ}Λ. With {D · ∅ | D ∈ Ψ} ⊆ Φ conclude
trivially (C · ∅)γ ⊆ ΦΛ. With Λ, RΛ ` Φ |= ΦΛ we get Λ, RΛ ` Φ |= (C · ∅)γ, which means
Λ 6|= ∅ or R?Λ ` Φ |= Cγ, equivalently R?Λ ` Φ |= Cγ.

Recall that we have to show that every relevant instance wrt. Λ satisfies (i) or (ii).
We prove this be contradiction. If there is a relevant counterexample, that is, a relevant
instance wrt. Λ of a clause in Φ that does not satisfy (i) or (ii), then, by well-foundedness
of the clause ordering, there is a minimal such instance wrt. the clause ordering �. From

20

now on let C · Γ be such a minimal relevant counterexample. Let C · Γ = (C ′ · Γ′)γ,
where C ′ · Γ′ ∈ Φ. By minimality of C · Γ, every relevant instance wrt. Λ of a clause in
Φ that is smaller than C · Γ satisfies (i) and (ii), hence it is satisfied by (Λ, RC·Γ).

(1) C · Γ is redundant wrt. Λ ` Φ or C · Γ is universally redundant wrt. Λ ` Φ.
If C ·Γ is redundant wrt. Λ ` Φ then there are relevant instances wrt. Λ of clauses in Φ,
each smaller wrt. � than C ·Γ, and that entail C ·Γ wrt. Λ. By the induction hypothesis,
and with Corollary 7.9, all these instances are true in (Λ, RC·Γ). As they entail C · Γ
wrt. Λ, we conclude that Λ, RC·Γ |= C · Γ, hence C · Γ satisfies (i), contradicting our
assumption.

Because C ·Γ is assumed to be a relevant instance wrt. Λ, by Lemma 8.6 C ·Γ cannot
be universally redundant wrt. Λ ` Φ either.

(2) Var(C ′)γ is reducible wrt. RC·Γ.
The ME+Sup calculus does not need to paramodulate into or below variables. To explain
the completeness of this restriction we have to know that property (i) is always satisfied
if Var(C ′)γ is reducible wrt. RC·Γ. Because C · Γ is a relevant instance of C ′ · Γ′ we
already know with Definition 7.1 that (Var(C ′) ∩ Var(Γ′))γ is irreducible wrt. RC·Γ.
If xγ is reducible for some x ∈ Var(C ′) \ Var(Γ′), then a term in the range of γ can
be replaced by a smaller yet congruent term wrt. R?C·Γ. Observe that this results in a
smaller (wrt. �) relevant counterexample, thus contradicting the choice of C · Γ.

(3) C = s 6≈ t ∨D with maximal literal s 6≈ t.
Suppose that none of the preceding cases holds and C · Γ = s 6≈ t ∨D · Γ and s 6≈ t is
maximal in s 6≈ t ∨D.

(3.1) s = t.
If s = t then there is a Deduce inference with premise C = s 6≈ t ∨D · Λ and conclusion
D ·Λ, which is an instance of a Deduce inference with an underlying Ref inference applied
to C ′ · Γ′. By saturation, this Deduce inference is universally redundant wrt. Λ ` Φ.
Because C ·Γ is not universally redundant wrt. Λ ` Φ, the clause D·Γ must be universally
redundant wrt. Λ ` Φ and C ·Γ by definition of redundant inferences. Furthermore, by
Lemma 7.6, D · Γ is a relevant instance wrt. (Λ, RC·Γ), hence, by Lemma 8.6, D · Γ is
redundant wrt. Λ ` Φ and C ·Γ and follows from relevant instances of clauses in Φ wrt. Λ
that are smaller than C ·Γ. By the minimality assumption, and with Corollary 7.9, these
clauses are satisfied by (Λ, RC·Γ), hence Λ, RC·Γ |= D · Γ, and, trivially, Λ, RC·Γ |= C · Γ,
contradicting our assumption. (In other cases below we will use similar arguments
without explicit reference to Lemmas 7.6, 8.6, and Corollary 7.9.)

(3.2) s 6= t.
If s 6= t then without loss of generality assume s � t. With Λ, RC·Γ 6|= s 6≈ t ∨D · Γ it
follows that Λ |= Γ and R?C·Γ 6|= s 6≈ t ∨D.

From R?C·Γ 6|= s 6≈ t ∨ D it follows in particular R?C·Γ |= s ≈ t. Because RC·Γ is
a convergent (ordered) rewrite system, s and t must have the same normal forms. In
particular, thus, s is reducible wrt. RC·Γ. Suppose s = s[l]p for some position p and rule
l→ r ∈ RC·Γ. We distinguish two cases.

21

(3.2.1) l ≈ r is a split atom.
If l ≈ r is a split atom then with l → r ∈ RC·Γ and Lemma 7.3-(i) it follows that
Λ produces l → r. For later use let l′ → r′ ∈∼ Λ be a fresh variant of a rewrite
literal that produces l → r in Λ and assume that γ has already been extended so that
(l′ → r′)γ = l→ r.

The conclusions so far give that Deduce is applicable with underlying ground U-Sup-
Neg inference with left premise l → r, right premise s[l]p 6≈ t ∨ D · Γ and conclusion
s[r]p 6≈ t ∨D · Γ, l→ r. The next step is to show that this ground inference is a ground
instance via γ of a U-Sup-Neg inference with premises l′ → r′ and C ′ · Γ′ = s′[u]p 6≈
t′∨D′ ·Γ′ and conclusion (s′[r]p 6≈ t′∨D′ ·Γ′, l′ → r′)σ, where mgu σ is an mgu of l′ and
u. This follows from the observation that the position p in s′ indeed exists and that u
cannot be a variable, because otherwise uγ is reducible wrt. RC·Γ (the rule l→ r would
rewrite it, as l = uγ), but we know that Var(C ′)γ is irreducible wrt. RC·Γ.

We need to know that Deduce is applicable with the (possibly non-ground) U-Sup-
Neg inference underlying it. For this, it only remains to show that Λ produces (l′ → r′)σ.
This, however, follows trivially from the fact that l′ → r′ ∈ Λ produces l → r in Λ, as
obtained above, and l′ → r′ & (l′ → r′)σ & l→ r (for if there were an l′′ 6→ r′′ ∈ Λ such
that l′ → r′ � l′′ → r′′ & (l′ → r′)σ then l′ → r′ would not produce l→ r in Λ either).

By saturation, the Deduce inference is universally redundant wrt. Λ ` Φ. Because
the instance C · Γ of its premise C ′ · Γ′ is not universally redundant wrt. Λ ` Φ, the
conclusion s[r]p 6≈ t∨D ·Γ, l→ r must be universally redundant wrt. Λ ` Φ and C ·Γ by
definition of redundant inferences. Furthermore, the conclusion is a relevant instance,
hence it is redundant wrt. Λ ` Φ and C ·Γ and follows from relevant instances of clauses
in Φ that are smaller than C · Γ. By the minimality assumption, these clauses are
satisfied by (Λ, RC·Γ), hence Λ, RC·Γ |= s[r]p 6≈ t∨D ·Γ, l→ r. By definition, this means
Λ 6|= Γ ∪ {l → r} or R?C·Γ |= s[r]p 6≈ t ∨D. The next step is to show Λ |= Γ ∪ {l → r}
which allows us to conclude R?C·Γ |= s[r]p 6≈ t ∨D.

To show Λ |= Γ ∪ {l→ r} we need to show, by Definition 4.1, that (a) Γ ∪ {l→ r}
consists of split rewrite literals and that (b) Λ produces Γ ∪ {l→ r}. Recall first Λ |= Γ
as an assumption from case (3.2) above. But then, (a) is immediate from Λ |= Γ and
from l ≈ r being a split atom and l � r. Similarly, (b) follows from RC·Γ |= Γ and
l→ r ∈ RC·Γ, and hence l→ r ∈ ΠΛ and so Λ produces l→ r.

We can thus conclude R?C·Γ |= s[r]p 6≈ t ∨D now, as announced. With l → r ∈ RC·Γ
by congruence it follows R?C·Γ |= s 6≈ t ∨D, however R?C·Γ 6|= s 6≈ t ∨D was assumed for
case (3.2) above.

(3.2.2) l ≈ r is a superposition atom.
The proof is similar to case (3.2.1), however referring to Sup-Neg inferences instead of
U-Sup-Neg inferences, and where the rewrite rule l → r ∈ R is generated by a ground
instance (C0 · Γ0)γ of a constrained clause C0 · Γ0 ∈ Φ instead of a rewrite literal from
ΠΛ. As we have shown in case (1), a generating clause cannot be redundant (and hence
cannot be universally redundant). It follows that the constraints of both premises of the
ground inferences must be produced by Λ. Their union, which is the constraint of the
conclusion thus is trivially produced by Λ, too. Regarding the clause parts, the same

22

congruence argument using l → r as in case (3.2.1) applies. Using Lemma 7.7, we see
that the remaining literals of (C0 · Γ0)γ are false wrt. RC·Γ, leading to a contradiction.

(4) C = s ≈ t ∨D with maximal literal s ≈ t.
Suppose C · Γ = s ≈ t ∨ D · Γ and s ≈ t is maximal in s ≈ t ∨ D. With C · Γ being
a counterexample it follows Λ |= Γ but R?C·Γ 6|= s ≈ t ∨ D. From the latter conclude
immediately R?C·Γ 6|= s ≈ t, and so s = t is impossible. Hence suppose s 6= t.

(4.1) s ≈ t is a split atom.
If s ≈ t is a split atom we distinguish two further cases.

(4.1.1) s or t is reducible wrt. RC·Γ.
If s or t is reducible wrt. RC·Γ then there is a rule l → r ∈ RC·Γ such that s = s[l]p or
t = t[l]p, for some position p. If l → r is generated by a rewrite literal from ΠΛ then
the same argumentation as in case (3.2.1) applies. The only changes are that instead
of (ground instances of) U-Sup-Neg inferences now (ground instances of) U-Sup-Pos
inferences are considered, and that s � t does not apply.

If l→ r is generated by a constrained clause from Φgr then the same argumentation
as in case (3.2.2) applies. The relevant inference rule in this case is Sup-Pos.

(4.1.2) s and t are irreducible wrt. RC·Γ.
If s and t are irreducible wrt. RC·Γ then assume, w.l.o.g., s � t. The ordering on clauses
and rewrite literals is defined in such a way that every constrained clause containing
s ≈ t is greater than the rewrite literal s→ t. With Lemma 7.3-(ii) then conclude that
Λ produces s 6→ t. This indicates that a Deduce inference with an underlying ground
Neg-U-Res inference exists. More precisely, the left premise of that ground inference is
s 6→ t, the right premise is s ≈ t ∨D · Γ and the conclusion is D · Γ, s 6→ t. It is routine
by now to check that this ground Neg-U-Res inference is a ground instance via γ of a
Neg-U-Res inference with a right premise from Φ that is not universally redundant wrt.
Λ ` Φ, and a left premise from Λ.

As in case (3.2.1) we can show that the Deduce inference with the latter underlying
Neg-U-Res inference exists. In particular, that Λ produces its instantiated left premise
(via σ) can be shown with the same arguments. The rest of the proof uses the same
arguments as in case (3.2.1), too.

(4.2) s ≈ t is a superposition atom.
If s ≈ t is a superposition atom assume, w.l.o.g., s � t and distinguish two cases.

(4.2.1) s is reducible wrt. RC·Γ.
If s is reducible wrt. RC·Γ the argumentation is similar to case (3.2.2) and is omitted.

(4.2.2) s is irreducible wrt. RC·Γ.
In this case, either s ≈ t∨D ·Γ generates s→ t, so property (ii) would be satisfied. Or a
Fact inference exists, which provides a smaller constrained clause that, by redundancy,
is true in (Λ, RC·Γ) and entails s ≈ t ∨ D · Γ. In both cases, we get a contradiction to
the assumption that s ≈ t ∨D · Γ is a minimal counterexample.

(5) C = �.

23

Suppose C · Γ = � · Γ. By assumption � · ∅ /∈ Φ, and so � · ∅ /∈ Φgr. Hence Γ 6= ∅. First
we are going to show that Split is applicable to Λ ` Φ with � · Γ′ ∈ Φ, where Γ = Γ′γ.

Because � · Γ is a relevant instance of � · Γ′ wrt. Λ, by Definition 7.1 Λ produces Γ′

and Λ produces Γ by the same literals. We are given that Λ is not contradictory. This
entails L /∈∼ Λ, for every L ∈ Γ′. For, if there is a literal L ∈ Γ′ with L ∈∼ Λ then Λ
would produce L. But in this case Λ can produce L only if L ∈∼ Λ, and so Λ would be
contradictory.

It is also impossible that L ∈∼ Λ, for every L ∈ Γ′ because then Close would be
applicable, and by saturation Close would be universally redundant, which is the case
only if � · ∅ ∈ Φ, which we have already excluded. Altogether conclude that there is a
literal K ∈ Γ′ such that neither K nor K is contradictory with Λ. This shows that a Split
inference with selected clause �·Γ′ exists, where K is the literal split on. Moreover, from
above we know that Λ produces Γ′. It follows that this Split inference is not universally
redundant wrt. Λ ` Φ. However, by saturation it is universally redundant wrt. Λ ` Φ,
a plain contradiction.

Theorem 8.13 applies to a statically given sequent Λ ` Φ. The connection to the
dynamic derivation process of the ME+Sup calculus will be given later, and Theorem 8.13
will be essential then in proving the completeness of the ME+Sup calculus.

9 Derivations with Simplification

To make derivation in ME+Sup practical the universal redundancy criteria defined above
should be made available not only to avoid inferences, but also to, e.g., delete universally
redundant clauses that come up in derivations. The following generic simplification rule
covers many practical cases.

Simp
Λ ` Φ, C · Γ
Λ ` Φ, C ′ · Γ′

if

(i) C · Γ is universally redundant wrt. Λ ` Φ, C ′ · Γ′, and

(ii) (Λc)a ∪ (Φ ∪ {C · Γ})c |= (C ′ · Γ′)c.

The Simp rule generalizes the widely-used simplification rules of the Superposition
calculus, such as deletion of trivial equations t 6≈ t from clauses, demodulation with unit
clauses and (non-proper) subsumption; these rules immediately carry over to ME+Sup
as long as all involved clauses have empty constraints. Also, as said above, the usual unit
propagation rules of the (propositional) DPLL procedure are covered in a more general
form. As ME+Sup is intended as a generalization of propositional DPLL (among others),
it is mandatory to provide this feature.

Condition (ii) is needed for soundness. The ·a-operator uniformly replaces each
variable in each (unit) clause by a constant a. This way, all splits are effectively over
complementary propositional literals.

24

Derivations. The purpose of the ME+Sup calculus is to build for a given clause set a
derivation tree over sequents all of whose branches end in a closed sequent iff the clause
set is unsatisfiable. Formally, we consider ordered trees T = (N,E) where N and E
are the sets of nodes and edges of T, respectively, and the nodes N are labelled with
sequents. Often we will identify a node’s label with the node itself.

Derivation trees T (of a set {C1, . . . , Cn} of clauses) are defined inductively as fol-
lows: an initial tree is a derivation tree, i.e., a tree T with a root node only that is
labeled with the sequent ¬x ` C1 · ∅, . . . , Cn · ∅; if T is a derivation tree, N is a leaf
node of T and T′ is a tree obtained from T by adding one or two child nodes to N so
that N is the premise of an ιME+Sup inference, a Simp inference or a Cancel inference,
and the child node(s) is (are) its conclusion(s), then T′ is derivation tree. In this case
we say that T′ is derived from T. A derivation (of {C1, . . . , Cn}) is a possibly infinite
sequence of derivation trees that starts with an initial tree and all subsequent derivation
trees are derived from their immediate predecessor. Each derivation D = ((Ni,Ei))i<κ,
where κ ∈ N ∪ {ω}, determines a limit tree (

⋃
i<κNi,

⋃
i<κEi). It is easy to show that

a limit tree of a derivation D is indeed a tree. But note that it will not be a derivation
tree unless D is finite.

Now let T be the limit tree of some derivation, let B = (Ni)i<κ be a branch in T
with κ nodes, and let Λi ` Φi be the sequent labeling node Ni, for all i < κ. Define
ΛB =

⋃
i<κ

⋂
i≤j<κ Λj11 and ΦB =

⋃
i<κ

⋂
i≤j<κ Φj , the sets of persistent context literals

and persistent clauses, respectively. These two sets can be combined to obtain the limit
sequent ΛB ` ΦB (of T).

As usual, the completeness of ME+Sup relies on a suitable notion of fairness, which
is defined in terms of exhausted branches. When we say that “X is not persistent”
we mean that X is not among the persistent context literals or X is not among the
persistent clauses, depending on whether X is a rewrite literal or a constrained clause.

Definition 9.1 (Exhausted Branch) Let T be a limit tree and B = (Ni)i<κ a branch in
T with κ nodes. For all i < κ, let Λi ` Φi be the sequent labeling node Ni. The branch
B is exhausted iff

(i) for all i < κ, every ιME+Sup inference with premise Λi ` Φi and a persistent selected
clause and a persistent left premise (in case of Deduce) is universally redundant
wrt. Λj ` Φj , for some j < κ with j ≥ i, and

(ii) � · ∅ /∈ ΦB

A limit tree of a derivation is fair iff it is a refutation tree that is, a finite tree all of
whose leafs contain � · ∅ in the constrained clause part of their sequent, or it has an
exhausted branch. A derivation is fair iff its limit tree is fair.

Notice that if in Definition 9.1, condition (i), the selected clause or the left premise
(in case of Deduce) is universally redundant wrt. Λi ` Φi, then the ιME+Sup inference is

11 The definition of ΛB is slightly more general as needed. Currently, there are no inference rules to
delete context elements, and so ΛB is always

S
i<κ Λi.

25

already redundant wrt. Λi ` Φi. In other words, inferences with a universally redundant
premise need not be carried out. In general, a fair proof procedure (and implementation)
needs to make sure that every inference satisfying condition (i) eventually becomes uni-
versally redundant. This can always be achieved by actually carrying out the inference.
(Proposition 8.10 provides the explanation for Deduce, for all other rules this is trivial.)

We are now going to establish some auxiliary results that justify to employ our
concepts of redundancy in derivations.

The intended interpretation of a limit sequent ΛB ` ΦB is the rewrite system
RΛB ` ΦB

which will denote by RB for simplicity. As a further convenience, we denote
the union of all context literals or all clauses of a branch B = (Ni)i<κ by Λ+

B =
⋃
i<κ Λi

and Φ+
B =

⋃
i<κ Φi, respectively.

Lemma 9.2 Let C · Γ be a constrained clause. If C · Γ is universally redundant wrt.
Λj ` Φj , for some j < κ, then C · Γ is universally redundant wrt. ΛB ` ΦB.

Proof. The proof works in essentially the same way as in [BGW94]. Suppose that C · Γ
is universally redundant wrt. Λj ` Φj . Since ΛB ⊇ Λj and Φ+

B ⊇ Φj , Lemma 8.5
implies that C · Γ is universally redundant wrt. Λj ` Φ+

B. Now observe that every
constrained clause in Φ+

B \ΦB has been deleted at some node of the branch B, which is
only possible if it was universally redundant wrt. some Λk ` Φk with k < κ. Again using
Lemma 8.5, we see that every constrained clause in Φ+

B \ ΦB is universally redundant
wrt. Λj ` Φ+

B. Hence ΦB is obtained from Φ+
B by deleting universally redundant clauses,

and using Lemma 8.5 a third time, we conclude that C · Γ is universally redundant wrt.
Λj ` ΦB. Because every ground rewrite literal in Λj is also contained in ΛB, the claim
of the lemma follows immediately.

Lemma 9.3 Every Deduce inference that is universally redundant wrt. Λj ` Φj , for some
j < κ, is universally redundant wrt. ΛB ` ΦB.

Proof. Analogously to the proof of Lemma 9.2 using Lemma 8.11.

Proposition 9.4 (Exhausted Branches are Saturated) If B is an exhausted branch of a
limit tree of a fair derivation then ΛB ` ΦB is saturated.

Proof. Suppose B is an exhausted branch of a limit tree of some fair derivation. We have
to show that every ιME+Sup inference with premise ΛB ` ΦB is universally redundant
wrt. ΛB ` ΦB. We do this by assuming such an inference and carrying out a case
analysis wrt. the inference rule applied.

By Definition 9.1 there is no Close inference with premise Λi ` Φi, for no i < κ,
with a persistent closing clause and persistent closing literals. But then there is no Close
inference with premise ΛB ` ΦB either. (Because if so, for a large enough i there would
be Close inference with premise Λi ` Φi, which we excluded.) Thus there is nothing to
show for Close.

If the inference rule is Split then let �·Γ be the selected clause. There are only finitely
many literals K, modulo renaming and modulo sign, that are more general than a given

26

literal or set of literals such as Γ. Because no inference rule ever removes a literal from
a context or adds a variant or its complement to a literal that is already in a context,
from some time k onwards, no more such literal K will be added to Λk,Λk+1,

We are given that � ·Γ is persistent. Therefore suppose also � ·Γ ∈ Λk,Λk+1, . . ., or
choose k big enough. Together this shows that a Split inference with premise Λi ` Φi

exists (i could be k or smaller). By Definition 9.1 then, the Split inference is universally
redundant wrt. Λj ` Φj , for some j < κ with j ≥ i. By universal redundancy, this
means that the selected clause � · Γ is universally redundant wrt. Λj ` Φj , or Λj does
not produce Γ. In the first case, use Lemma 9.2 to conclude that � · Γ is universally
redundant wrt. ΛB ` ΦB, and so the Split inference with selected clause � · Γ is
universally redundant wrt. ΛB ` ΦB.

In the second case let j1 < j2 < · · · be all those points greater than j such that
each Λj1 ,Λj2 , . . . produces Γ. By fairness, for each point jl there must be a later point
j′l such that Λj′l does not produce Γ. This can be achieved only by adding literals to the
context. With the argument above about the finitely many literals K with the properties
mentioned there, the sequence j1 < j2 < · · · must be finite (it could be empty). In other
words, there is a jl such that for every k ≥ jl, Λk does not produce Γ. But then, ΛB does
not produce Γ either, which entails that � · Γ is universally redundant wrt. ΛB ` ΦB,
and we are done, as in first case.

If the inference rule is Deduce then by Definition 9.1 it is universally redundant wrt.
Λj ` Φj , for some j ≥ i, and by Lemma 9.3 it is universally redundant wrt. ΛB ` ΦB.

Proposition 9.4 is instrumental in the proof of our main result, which is the following.

Theorem 9.5 (Completeness) Let Ψ be a clause set and T be the limit tree of a fair
derivation of Ψ. If T is not a refutation tree then Ψ is satisfiable; more specifically, for
every exhausted branch B of T with limit sequent ΛB ` ΦB and induced rewrite system
RB = RΛB ` ΦB

it holds ΛB, RB |= (ΦB)ΛB and R?B |= Ψ.

Proof. Suppose T is not a refutation tree and let B an exhausted branch of T. By
Proposition 9.4 the limit sequent ΛB ` ΦB is saturated. It is easy to see that ΛB is non-
contradictory (the context in the initial sequent of the derivation is non-contradictory,
and all inference rules preserve this property.) By Theorem 8.13 then ΛB, RB |= (ΦB)ΛB .

To show R?B |= Ψ, let C ∈ Ψ be any clause from Ψ, and it suffices to show R?B |= C.
By definition of derivation, C ·∅ ∈ Φ1. If C ·∅ ∈ ΦB then the second part of Theorem 8.13
gives R?B |= C immediately. Otherwise assume C ·∅ /∈ ΦB. Hence C ·∅ has been removed
at some time k < κ from the clause set Φk of the sequent Λk ` Φk by an application of
the Simp rule. By definition of Simp, C · ∅ is universally redundant wrt. Λk+1 ` Φk+1.
By Lemma 9.2, C · ∅ is universally redundant wrt. ΛB ` ΦB. Since C · ∅ has an
empty constraint, all its ground instances are relevant, and by Corollary 8.7, all relevant
instances wrt. ΛB are redundant wrt. ΛB ` ΦB, hence they are entailed wrt. ΛB by
clauses in (ΦB)ΛB . With ΛB, RB |= (ΦB)ΛB , the first part of the theorem, which is

27

already proved, we get ΛB, RB |= C · ∅. With the constraint being empty, R?B |= C
follows immediately.

The ME+Sup calculus is also sound. The idea behind the soundness proof is to
conceptually replace in a refutation tree every variable in every literal in all contexts by a
constant, say, a. This results in a refutation tree where all splits are over complementary
propositional literals. Regarding Close inferences, any closing clause will still be closing
after instantiating all its variables in the same way. Furthermore, observe that the Ref,
Sup-Neg, Sup-Pos and Fact inference rules are sound in the standard sense by taking
the clausal forms of the premises and the conclusions. For the remaining ιBase inference
rules U-Sup-Pos, U-Sup-Neg and Neg-U-Res this is even simpler as the constraint in the
conclusion contains the left premise (they are strongly sound). The soundness of Simp
follows from its condition (ii). This way, a set of ground instances can be identified
that demonstrates the unsatisfiability of the clausal form of the constrained clause set
in the root sequent. A formal completeness proof can be carried out as for the MEE

calculus [BT05].

10 Conclusions

Our main result is the completeness of the new ME+Sup calculus. On the theoretical
side, we plan to investigate how it can be exploited to obtain decision procedures for
fragments of first-order logic that are beyond the scope of current superposition or
instance-based methods. Ultimately, we will need an implementation to see how the
labelling function is best exploited in practice for general refutational theorem proving.

Acknowledgements. We thank the reviewers of an earlier version of this paper and
Cesare Tinelli for their helpful comments.

References

[BG98] Leo Bachmair and Harald Ganzinger. Chapter 11: Equational Reasoning in
Saturation-Based Theorem Proving. In Wolfgang Bibel and Peter H. Schmitt,
editors, Automated Deduction. A Basis for Applications, volume I: Founda-
tions. Calculi and Refinements, pages 353–398. Kluwer Academic Publishers,
1998.

[BGW94] Leo Bachmair, Harald Ganzinger, and Uwe Waldmann. Refutational theorem
proving for hierarchic first-order theories. Applicable Algebra in Engineering,
Communication and Computing, 5(3/4):193–212, April 1994.

[BN98] F. Baader and T. Nipkow. Term Rewriting and all that. Cambridge Univer-
sity Press, Cambridge, 1998.

28

[BT03] Peter Baumgartner and Cesare Tinelli. The Model Evolution Calculus. In
Franz Baader, editor, CADE-19 – The 19th International Conference on
Automated Deduction, volume 2741 of Lecture Notes in Artificial Intelligence,
pages 350–364. Springer, 2003.

[BT05] Peter Baumgartner and Cesare Tinelli. The model evolution calculus with
equality. In Robert Nieuwenhuis, editor, CADE-20 – The 20th International
Conference on Automated Deduction, volume 3632 of Lecture Notes in Arti-
ficial Intelligence, pages 392–408. Springer, 2005.

[NR95] Robert Nieuwenhuis and Albert Rubio. Theorem Proving with Ordering and
Equality Constrained Clauses. Journal of Symbolic Computation, 19:321–
351, 1995.

[WSH+07] Christoph Weidenbach, Renate Schmidt, Thomas Hillenbrand, Rostislav Ru-
sev, and Dalibor Topic. System description: Spass version 3.0. In Frank
Pfenning, editor, CADE-21 — 21st International Conference on Automated
Deduction, volume 4603 of Lecture Notes in Artificial Intelligence, pages
514–520. Springer, 2007.

29

A Proof of Lemma 7.6

Lemma 7.6 (ιBase-inferences Preserve Relevant Instances) Let Λ ` Φ be a sequent and
assume an ιBase inference with right (or only) premise C · Γ, conclusion C ′ · Γ′, and a
ground instance via γ of the ιBase inference such that

(i) (C · Γ)γ is a relevant instance of C · Γ wrt. (Λ, R(C·Γ)γ),

(ii-a) in case of Sup-Neg or Sup-Pos, the left premise (l ≈ r ∨ C ′′ · Γ′′)γ generates
(l → r)γ in RΛ ` Φ via l ≈ r ∨ C ′′ · Γ′′ (the left premise of the non-ground
inference),

(ii-b) in case of U-Sup-Neg or U-Sup-Pos, the left premise (l → r)γ generates the
rule (l→ r)γ in RΛ ` Φ, and

(ii-c) in case of Neg-U-Res, the left premise is ¬Aγ = (s 6→ t)γ and sγ and tγ are
irreducible wrt. R(C·Γ)γ .

Then, the conclusion (C ′ · Γ′)γ of the ground inference is a relevant instance of C ′ · Γ′
wrt. (Λ, R(C·Γ)γ), for some possibly different merge substitution in case of a Sup-Neg or
Sup-Pos inference.

Proof. For convenience we abbreviate R := R(C·Γ)γ below.
With (i), by Definition 7.1, Γγ consists of split rewrite literals, Λ produces Γ and Λ

produces Γγ by the same instances, and (Var(C) ∩ Var(Γ))γ is irreducible wrt. R. We
have to show

(1) Γ′γ consists of split rewrite literals,

(2) Λ produces Γ′ and Λ produces Γ′γ by the same instances, and

(3) (Var(C ′) ∩ Var(Γ′))γ is irreducible wrt. R.

The proof of (1) follows easily from inspection of the ιBase inference rules. Each inference
rule requires that the (instantiated) constraints in the constrained clauses in the premise
consist of split rewrite literals. Furthermore, U-Sup-Neg, U-Sup-Pos and Neg-U-Res, as
the only rules that add new rewrite literals, come with conditions that force that for the
new rewrite literals.

It remains to show (2) and (3).
Let σ (σπ in case of Sup-Pos- or Sup-Neg inference) be the mgu used in the ιBase

inference. Assume σ (σπ) is idempotent, which is the case with usual unification al-
gorithms. Because γ gives a ground instance of the given ιBase inference, γ must be a
unifier for the same terms as σ (σπ). Because σ (σπ) is a most general unifier, there is
a substitution δ such that γ = σδ (γ = σπδ). With the idempotency of σ (σπ) we get
γ = σδ = σσδ = σγ (γ = σπδ = σπσπδ = σπγ).

For later use we prove the following facts:

30

(i) Λ produces Γσ (Γσπ) and Λ produces Γσγ (Γσπγ) by the same literals.

Proof: Consider an arbitrary literal L ∈ Γ and suppose that K ∈ Λ produces L
and Lγ in Λ. If K didn’t produce Lσ in Λ then there would be a K ′ ∈ Λ with
K � K ′ & Lσ. With γ = σδ and by transitivity of & we would get K � K ′ & Lγ,
and so K would not produce Lγ either. With γ = σγ obtained above the second
claim is trivial.

The proof that Λ produces Γσπ and Λ produces Γσπγ by the same literals is the
same after replacing σ by σπ.

(ii) For every term t, if Var(t)γ is irreducible wrt. R then Var(tσ)γ (Var(tσπ)γ) is
irreducible wrt. R.

Proof: Let t be a term and suppose Var(t)γ is irreducible wrt. R. Chose a variable
y ∈ Var(tσ) arbitrarily. It suffices to show that yγ is irreducible wrt. R. With
y ∈ Var(tσ), y must occur in a term xσ, for some variable x ∈ Var(t) (y = x
is possible). With y being a subterm of xσ, yγ is a subterm of xσγ. With the
identity γ = σγ above we get that yγ is a subterm of xγ. We assumed Var(t)γ
irreducible wrt. R. With x ∈ Var(t), xγ is irreducible wrt. R, and it is clear that
its subterm yγ then irreducible wrt. R, too.

The proof that Var(tσπ)γ is irreducible wrt. R is the same after replacing σ by
σπ.

(iii) (Var(Cσ) ∩ Var(Γσ))γ is irreducible wrt. R.

Proof: From above we know that (Var(C) ∩ Var(Γ))γ is irreducible wrt. R. If
x ∈ Var(C) ∩ Var(Γ) take t = x and conclude with fact (ii) that Var(xσ)γ
is irreducible wrt. R. Because this holds for every x ∈ Var(C) ∩ Var(Γ) we
get that Var((Var(C) ∩ Var(Γ))σ)γ is irreducible wrt. R. The next step is to
show Var((Var(C) ∩ Var(Γ))σ) = Var(Cσ) ∩ Var(Γσ). The claim then follows
immediately.

It is not difficult to see Var((Var(C) ∩ Var(Γ))σ) ⊆ Var(Cσ) ∩ Var(Γσ). We
are going to exclude the possibility that there is a variable y in the right set but
not in the left set of the inequality. The existence of such a variable y can only
be explained with two variables xC ∈ Var(C) \ Var(Γ) and xΓ ∈ Var(Γ) \ Var(C)
such that y ∈ Var(xCσ) and y ∈ Var(xΓσ). However, recall that σ (or σπ) is a
unifier between terms in the clause part only of the right premise and possibly the
left premise. Also, we are always taking fresh variants of a premise in inference
rules. Together this entails that extraneous variables xΓ cannot be moved by σ
(or σπ), and that xΓ is not in the codomain of σ. Under these (safe) assumptions
then we can conclude that the claimed variable y does not exist.

The above argumentation can be used in the same way to conclude that (Var(Cσπ)∩
Var(Γσπ))γ is irreducible wrt. R.

To prove (2) and (3) we carry out a case analysis with respect to the ιBase inference
rule applied.

31

In case of a Ref inference let the premise be s 6≈ t∨C ′′ ·Γ and the conclusion (C ′′ ·Γ)σ.
Then (2) follows directly from fact (i). Regarding (3), we already know that (Var(s 6≈
t∨C ′′)∩Var(Γ))γ is irreducible wrt. R. By fact (iii) then (Var((s 6≈ t∨C ′′)σ)∩Var(Γσ))γ
is irreducible wrt. R. The subset (Var(C ′′σ) ∩ Var(Γσ))γ then is trivially irreducible
wrt. R, too, which proves (3).

In case of a U-Sup-Neg inference let the left premise be l → r, the right premise
C · Γ = s[u]p ≈ t ∨ C ′′ · Γ and the conclusion C ′ · Γ′ = (s[r]p ≈ t ∨ C ′′ · Γ, l → r)σ. First
we show (2), i.e., that Λ produces (Γ, l→ r)σ and Λ produces (Γ, l→ r)σγ by the same
literals. With respect to the subsets Γσ and Γσγ the claim follows from fact (i). With
respect to (l → r)σ and (l → r)σγ recall we are given that that (l → r)σ generates
(l → r)γ in RΛ ` Φ, and hence l → r ∈ R. By Lemma 7.3-(i) then Λ produces (l → r)γ,
that is, some literal K ∈ Λ produces (l→ r)γ in Λ. It remains to show that K produces
(l → r)σ in Λ. With K producing (l → r)γ in Λ, and (l → r)γ being an instance of
(l→ r)σ the proof is similar to the one of fact (i) above and is omitted.

To prove (3) we show that (Var((s[r]p ≈ t∨C ′′)σ)∩Var((Γ, l→ r)σ))γ is irreducible
wrt. R. Fact (iii) above only gives us that (Var((s[u]p ≈ t ∨ C ′′)σ) ∩ Var(Γσ))γ
is irreducible wrt. R. To get the desired result from that it is enough to show that
Var(rσ)γ and Var(lσ)γ are irreducible wrt. R, because only rσ and lσ (via (l → r)σ)
can contribute additional variables beyond those in Var((s[u]p ≈ t ∨ C ′′)σ) ∩ Var(Γσ).

Regarding Var(rσ)γ, with fact (ii) it suffices to show that Var(r)γ is irreducible wrt.
R. With (l → r)γ generating (l → r)γ in RΛ ` Φ it is impossible that rγ (and lγ) are
reducible wrt. R(l→r)γ . With lγ � rγ it is clear that (l→ r)γ cannot reduce rγ, nor can
any other rule greater than (l→ r)γ. This shows that rγ is irreducible even wrt. R.

Regarding Var(lσ)γ we use a different argumentation. Another consequence of (l→
r)γ being generated is that (l → r)γ ∈ R. However, (l → r)γ ∈ R reduces lγ, but it
can be shown that no other rule in R greater than (l → r)γ can reduce lγ. This is,
because that rules left hand side would have to be lγ, but with (l→ r)γ ∈ R it would be
reducible by a smaller rule, and thus it would not have been generated, and thus not be
in RΛ ` Φ. An important detail now is that the target term u unified with l by σ in the
non-ground inference is not a variable. Every variable x ∈ Var(lσ) therefore must be a
proper subterm of lσ. And so xγ is a proper subterm of lσγ (= lγ). But then xγ can
be reducible wrt. R only by those rules that are already in R(l→r)γ . Because (l → r)γ
is generated, we know that lγ is irreducible wrt. R(l→r)γ . Together this entails that xγ,
and hence Var(lσ) is irreducible wrt. R(l→r)γ , and also wrt. R.

The proof for the case of a U-Sup-Pos inference is the same.
In case of a Neg-U-Res inference let the left premise be ¬A, the right premise C ·Γ =

s ≈ t ∨ C ′′ · Γ and the conclusion C ′ · Γ′ = (C ′′ · Γ, s 6→ t)σ. First we show that Λ
produces (Γ, s 6→ t)σ and Λ produces (Γ, s→ t)σγ by the same literals. With respect to
the subsets Γσ and Γσγ the claim follows from fact (i).

With respect to (s 6→ t)σ and (s 6→ t)σγ recall we are given sγ and tγ are irreducible
wrt. R. The ordering on clauses and rewrite literals is defined in such a way that
every constrained clause containing s ≈ t is greater than the rewrite literal s → t. By
Lemma 7.3-(ii) then Λ produces (s 6→ t)γ, that is, some literal K ∈ Λ produces (s 6→ t)γ

32

in Λ. It remains to show that K produces (s 6→ t)σ in Λ. With K producing (s 6→ t)γ
in Λ, and (s 6→ t)γ being an instance of (s 6→ t)σ the proof is again similar to the one of
fact (i) above and is omitted.

We still need to show (3), that (Var(C ′′σ) ∩ Var((Γ, l 6→ r)σ))γ is irreducible wrt.
R. Fact (iii) above only gives us that (Var((s ≈ t ∨ C ′′)σ) ∩ Var(Γσ))γ is irreducible
wrt. R. But only rσ and lσ (via (l 6→ r)σ) can contribute additional variables beyond
those in Var((s ≈ t ∨ C ′′)σ) ∩ Var(Γσ). It is therefore enough to show that Var(rσ)γ
and Var(lσ)γ are irreducible wrt. R. This however follows immediately from the fact
above that sγ and tγ are irreducible wrt. R and fact (ii).

In case of a Sup-Neg inference let the left premise be l ≈ r∨C ′′′ ·Γ′′′, the right premise
C ·Γ = s[u]p ≈ t∨C ′′ ·Γ and the conclusion C ′ ·Γ′ = (s[r]p ≈ t∨C ′′∨C ′′′ ·Γ,Γ′′′)σπ. Recall
we are given that (l ≈ r ∨ C ′′′ · Γ′′′)γ generates (l → r)γ in RΛ ` Φ via l ≈ r ∨ C ′′′ · Γ′′′.
By definition then, (l ≈ r ∨ C ′′′ · Γ′′′)γ is a relevant instance of l ≈ r ∨ C ′′′ · Γ′′′ wrt.
(Λ, R(l≈r∨C′′′·Γ′′′)γ), which means that Λ produces Γ′′′ and Λ produces Γ′′′γ by the same
literals, and that (Var(l ≈ r ∨ C ′′′) ∩ Var(Γ′′′))γ is irreducible wrt. R(l≈r∨C′′′·Γ′′′)γ .

For (2) we need to show that Λ produces (Γ,Γ′′′)σπ and Λ produces (Γ,Γ′′′)σπγ
by the same literals. With respect to the subsets Γσπ and Γσπγ the claim follows
again from fact (i). With respect to the subsets Γ′′′σπ and Γ′′′σπγ we can use the same
argumentation as in fact (i) above, this time starting with Λ produces Γ′′′ and Λ produces
Γ′′′γ by the same literals, yielding that Λ produces Γ′′′σπ and Λ produces Γ′′′σπγ by the
same literals.

Before proceeding with (3), recall that (l ≈ r ∨ C ′′′ · Γ′′′)γ generates (l → r)γ in
RΛ ` Φ, thus (l→ r)γ ∈ R (because in ground Sup-Neg inferences the left premise always
smaller than the right premise). It can be shown that the only rule in R \R(l≈r∨C′′′·Γ′′′)γ
that can rewrite (l ≈ r ∨C ′′′)γ is (l→ r)γ itself: rewriteability by any other rule would
give a contradiction to the maximality of (l ≈ r)γ in (l ≈ r ∨ C ′′′)γ or that rule could
not have been generated, as its left-hand side would be reducible by (l→ r)γ. Moreover,
(l → r)γ can rewrite (l ≈ r ∨ C ′′′)γ only at topmost positions of greater sides wrt. � of
positive equations in (l ≈ r∨C ′′′)γ. All other terms in (l ≈ r∨C ′′′)γ are irreducible wrt.
R \R(l≈r∨C′′′·Γ′′′)γ . In particular, as lγ � rγ, rγ is irreducible wrt. R \R(l≈r∨C′′′·Γ′′′)γ .

For (3) we need to show that (Var((s[r]p ≈ t ∨C ′′ ∨C ′′′)σπ) ∩ Var((Γ,Γ′′′)σπ))γ is
irreducible wrt. R.

The first sub-proof is to show that (Var(C ′′′σπ) ∩ Var(Γ′′′σπ))γ is irreducible wrt.
R. From above we (only) know so far that (Var(l ≈ r ∨ C ′′′) ∩ Var(Γ′′′))γ and hence
(Var(C ′′′) ∩ Var(Γ′′′))γ is irreducible wrt. R(l≈r∨C′′′·Γ′′′)γ . Using the results from further
above, the only rule in R \R(l≈r∨C′′′·Γ′′′)γ that can reduce C ′′′γ is (l→ r)γ, and only at
top-level positions of bigger sides of positive equations in C ′′′γ. Let (x1 ≈ t1 ∨ · · ·xn ≈
tn)γ be the biggest subclause of C ′′′γ such that lγ = x1γ = · · · = xnγ. The substitution
π must now be chosen as an mgu for the terms lσ, x1σ, . . . , xnσ. Observe this is possible
because rγ � lγ and lγ � x1γ, . . . , lγ � xnγ. Because lσ is not a variable, none of the
terms x1σπ, . . . , xnσπ is a variable either. Thus every variable occurring in one of these
terms must be a proper subterm of (the same) term lσπ. This entails that every term in
Var(xiσπ)γ is a proper subterm of lσπγ (= lγ), for all i = 1, . . . , n and hence irreducible

33

by (l → r)γ. Because of the choice as the biggest subclause above, there is no term in
Var(C ′′′σπ)γ left that can be reduced by l→ r, or any other rule in R\R(l≈r∨C′′′·Γ′′′)γ . It
follows trivially that (Var(C ′′′σπ) ∩ Var(Γ′′′σπ))γ is irreducible wrt. R \R(l≈r∨C′′′·Γ′′′)γ .
To complete the first sub-proof it remains to be shown that (Var(C ′′′σπ)∩Var(Γ′′′σπ))γ
is irreducible wrt. R(l≈r∨C′′′·Γ′′′)γ . This, however, can be done with the same arguments
as in fact (iii), however using the rewrite system R(l≈r∨C′′′·Γ′′′)γ instead of R, and starting
from (Var(l ≈ r ∨ C ′′′) ∩ Var(Γ′′′))γ being irreducible wrt. R(l≈r∨C′′′·Γ′′′)γ

Fact (iii) above gives us that (Var((s[u]p ≈ t ∨ C ′′)σπ) ∩ Var(Γσπ))γ is irreducible
wrt. R. This result can be combined with the result from the first sub-proof to obtain
that (Var((s[u]p ≈ t ∨ C ′′ ∨ C ′′′)σπ) ∩ Var((Γ,Γ′′′)σπ))γ is irreducible wrt. R. The
arguments for that are the same as in fact (iii) and assume that the substitution σπ
does not move extraneous variables in constraints and that these variables do not occur
in the codomain of σπ.

But this result is not quite what we need. For (3) we need to show that (Var((s[r]p ≈
t∨C ′′ ∨C ′′′)σπ) ∩ Var((Γ,Γ′′′)σπ))γ is irreducible wrt. R. Observe that any additional
variables in the latter set must stem from Var(rσπ). It is therefore enough to show that
(Var(rσπ) ∩ Var(Γ′′′σπ))γ is irreducible wrt. R.

From further above we know that rγ is irreducible wrt. R \R(l≈r∨C′′′·Γ′′′)γ . Because
every term in Var(r)γ is a (possibly non-proper) subterm of rγ, Var(r)γ is irreducible
wrt. R\R(l≈r∨C′′′·Γ′′′)γ , too. Also from above we know that (Var(l ≈ r∨C ′′′)∩Var(Γ′′′))γ
is irreducible wrt. R(l≈r∨C′′′·Γ′′′)γ . With the same arguments as in fact (iii) conclude
that (Var((l ≈ r ∨C ′′′)σπ) ∩ Var(Γ′′′σπ))γ is irreducible wrt. R(l≈r∨C′′′·Γ′′′)γ . Trivially,
(Var(rσπ) ∩ Var(Γ′′′σπ))γ is irreducible wrt. R(l≈r∨C′′′·Γ′′′)γ . Together, (Var(rσπ) ∩
Var(Γ′′′σπ))γ is irreducible wrt. R. This completes the proof of this case.

In case of a Sup-Pos inference the proof is exactly the same.
Finally, in case of a Fact inference observe that Var(l ≈ t ∨ r 6≈ t ∨ C) ⊆ Var(l ≈

r ∨ s ≈ t ∨ C). The proof then follows easily with facts (i) and (iii).

34

	Introduction
	Formal Preliminaries
	Contexts
	Constrained Clauses
	Inference Rules on Constrained Clauses
	Inference Rules on Sequents
	Model Construction
	Redundancy, Saturation and Static Completeness
	Derivations with Simplification
	Conclusions
	Proof of Lemma 7.6

