
A Process Algebra for Wireless Mesh Networks

Ansgar Fehnker1,4, Rob van Glabbeek1,4, Peter Höfner1,4, Annabelle McIver2,1,
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Abstract. We propose a process algebra for wireless mesh networks that
combines novel treatments of local broadcast, conditional unicast and
data structures. In this framework, we model the Ad-hoc On-Demand
Distance Vector (AODV) routing protocol and (dis)prove crucial prop-
erties such as loop freedom and packet delivery.

1 Introduction

Wireless Mesh Networks (WMNs) have recently gained considerable popular-
ity and are increasingly deployed in a wide range of application scenarios, in-
cluding emergency response communication, intelligent transportation systems,
mining, video surveillance, etc. WMNs are essentially self-organising wireless
ad-hoc networks that can provide broadband communication without relying
on a wired backhaul infrastructure. This has the benefit of rapid and low-cost
network deployment. WMNs can be considered a superset of Mobile Ad-hoc
Networks (MANETs), where a network consists exclusively of mobile end user
devices such as laptops or smartphones. In contrast to MANETs, WMNs typi-
cally also contain stationary infrastructure devices called mesh routers. However,
this distinction is not relevant for the purpose of this paper; what matters is that
both MANETs and WMNs share the characteristic of highly dynamic network
topologies, due to node mobility and the variable nature of wireless links.

In WMNs, a routing protocol is used to establish and maintain network
connectivity through paths between source and destination node pairs. As a
consequence, the routing protocol is one of the key factors determining the per-
formance and reliability of WMNs. Traditionally, the main tools for evaluating
and validating network protocols are simulation and test-bed experiments. The
key limitations of these approaches are that they are very expensive, time con-
suming and non-exhaustive, i.e., they only cover a very limited set of network
scenarios. As a result, protocol errors and limitations are still found many years
after the definition and standardisation; for example, see [14].

Formal methods have a great potential in helping to address this problem,
and can provide valuable tools for design, evaluation and verification of WMN
routing protocols. The overall goal is to reduce the “time-to-market” for better
(new or modified) WMN protocols, and to increase the reliability and perfor-
mance of the corresponding networks.
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In this paper, we propose a process algebra that provides a step towards this
goal. It combines novel treatments of data structures, conditional unicast and
local broadcast, and allows formalisation of all important aspects of a routing
protocol. All these features are necessary to model “real life” WMNs. Data
structures are used to store and maintain information, e.g. routing tables. The
conditional unicast construct allows us to model that a node in a network sends
a message to a particular neighbour, and if this fails, for example because the
receiver has moved out of transmission range, error handling is initiated. Finally,
the local broadcast primitive, which allows a node to send messages to all its
immediate neighbours, models the wireless broadcast mechanism implemented
by the physical and data link layer of wireless standards relevant for WMNs.
Our formalisation assumes that any broadcast message is received by all nodes
within transmission range.1 This abstraction enables us to interpret a failure of
guaranteed message delivery as an imperfection in the protocol, rather than as
a result of a chosen formalism not allowing guaranteed delivery.

To demonstrate the use of our algebra, in [6] we use it to formally model
and reason about the Ad-Hoc On-Demand Distance Vector (AODV) routing
protocol [16]—we outline this work here. AODV is one of the most relevant and
widely used routing protocols in WMNs. Our model covers the complete core
functionality of AODV and abstracts from timing and optional features only.
The process algebra proposed in this paper allows us to prove critical protocol
properties of AODV, such as loop freedom. We also use our model to show limi-
tations of AODV, e.g. that AODV does not guarantee that messages are always
delivered to their destinations, even if a stable route exists (cf. Section 3.4).

2 A Process Algebra for Wireless Routing Protocols

In this section we propose AWN, a process algebra for the specification of WMN
routing protocols such as AODV. It models a WMN as an encapsulated parallel
composition of network nodes. On each node several sequential processes may be
running in parallel. Network nodes communicate with their direct neighbours—
those nodes that are in transmission range—using either broadcast or unicast.
Due to mobility of nodes and variability of wireless links, nodes can move in or
out of transmission range. The encapsulation of the entire network inhibits com-
munications between network nodes and the outside world, with the exception
of the receipt and delivery of data packets from or to clients 2 of the modelled
protocol that may be hooked up to various nodes.

1 In reality, communication is only half-duplex: a network node cannot receive mes-
sages while sending and hence messages can be lost. However, the CSMA protocol
used at the link layer—not modelled here—keeps the probability of packet loss due
to two nodes (within range) sending at the same time rather low. Since we are ex-
amining imperfect protocols, we first of all want to establish how they behave under
optimal conditions. For this reason we abstract from probabilistic reasoning by as-
suming no message loss at all, rather than working with a lossy broadcast formalism
that offers no guarantees that any message will ever arrive.

2 The application layer that initiates packet sending and awaits receipt of a packet.
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2.1 A Language for Sequential Processes

The internal state of a process is determined, in part, by the values of certain
data variables that are maintained by that process. To this end, we assume a
data structure with several types, variables ranging over these types, operators
and predicates. First order predicate logic yields terms (or data expressions) and
formulas to denote data values and statements about them. Our data structure
always contains the types DATA, MSG, IP and P(IP) of application layer data,
messages, IP addresses—or any other node identifiers—and sets of IP addresses.

In addition, we assume a set of process names. Each process name X comes
with a defining equation

X(var1, . . . , varn)
def
= p ,

in which n ∈ IN, the vari are variables and p is a sequential process expres-
sion defined by the grammar below. It may contain the variables vari as well
as X. However, all occurrences of data variables in p have to be bound.3 The
choice of the underlying data structure and the process names with their defining
equations can be tailored to any particular application of our language.

The sequential process expressions are given by the following grammar:

SP ::= X(exp1, . . . , expn) | [ϕ]SP | [[var := exp]]SP | SP + SP |
α.SP | unicast(dest,ms).SP I SP

α ::= broadcast(ms) | groupcast(dests,ms) | send(ms) |
deliver(data) | receive(msg)

Here X is a process name, expi a data expression of the same type as vari, ϕ
a data formula, var := exp an assignment of a data expression exp to a variable
var of the same type, dest, dests, data and ms data expressions of types IP,
P(IP), DATA and MSG, respectively, and msg a data variable of type MSG.

Given a valuation of the data variables by concrete data values, the sequen-
tial process [ϕ]p acts as p if ϕ evaluates to true, and deadlocks if ϕ evaluates
to false. In case ϕ contains free variables that are not yet interpreted as data
values, values are assigned to these variables in any way that satisfies ϕ, if pos-
sible. The sequential process [[var := exp]]p acts as p, but under an updated
valuation of the data variable var. The sequential process p+ q may act either
as p or as q, depending on which of the two processes is able to act at all.
In a context where both are able to act, it is not specified how the choice is
made. The sequential process α.p first performs the action α and subsequently
acts as p. The action broadcast(ms) broadcasts (the data value bound to the
expression) ms to the other network nodes within transmission range, whereas
unicast(dest,ms).p I q is a process that tries to unicast the message ms to

3 An occurrence of a data variable in p is bound if it is one of the variables vari, a
variable msg occurring in a subexpression receive(msg).q, a variable var occurring in
a subexpression [[var := exp]]q, or an occurrence in a subexpression [ϕ]q of a variable
occurring free in ϕ. Here q is an arbitrary sequential process expression.
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ξ,broadcast(ms).p broadcast(ξ(ms))−−−−−−−−−−−→ ξ, p

ξ,groupcast(dests,ms).p groupcast(ξ(dests),ξ(ms))−−−−−−−−−−−−−−−−→ ξ, p

ξ,unicast(dest,ms).p I q unicast(ξ(dest),ξ(ms))−−−−−−−−−−−−−−→ ξ, p

ξ,unicast(dest,ms).p I q ¬unicast(ξ(dest))−−−−−−−−−−−→ ξ, q

ξ, send(ms).p send(ξ(ms))−−−−−−−→ ξ, p

ξ,deliver(data).p deliver(ξ(data))−−−−−−−−−−→ ξ, p

ξ, receive(msg).p receive(m)−−−−−−−→ ξ[msg := m], p (∀m ∈ MSG)

ξ, [[var := exp]]p τ−→ ξ[var := ξ(exp)], p

∅[vari := ξ(expi)]
n
i=1, p

a−→ ζ, p′

ξ,X(exp1, . . . , expn) a−→ ζ, p′
(X(var1, . . . , varn)

def
= p) (∀a ∈ Act)

ξ, p a−→ ζ, p′

ξ, p+ q a−→ ζ, p′

ξ, q a−→ ζ, q′

ξ, p+ q a−→ ζ, q′

ξ
ϕ→ ζ

ξ, [ϕ]p τ−→ ζ, p
(∀a ∈ Act)

Table 1. Structural operational semantics for sequential process expressions

the destination dest; if successful it continues to act as p and otherwise as
q. In other words, unicast(dest,ms).p is prioritised over q; only if the action
unicast(dest,ms) is not possible, the alternative q will happen. It models an
abstraction of an acknowledgment-of-receipt mechanism that is typical for uni-
cast communication but absent in broadcast communication, as implemented by
the link layer of relevant wireless standards such as IEEE 802.11. The process
groupcast(dests,ms).p tries to transmit ms to all destinations dests, and pro-
ceeds as p regardless of whether any of the transmissions is successful. Unlike
unicast and broadcast, the expression groupcast does not have a unique coun-
terpart in networking. Depending on the protocol and the implementation it can
be an iterative unicast, a broadcast, or a multicast; thus groupcast abstracts
from implementation details. The action send(ms) synchronously transmits a
message to another process running on the same node; this action can occur only
when this other sequential process is able to receive the message. The sequential
process receive(msg).p receives any message m (a data value of type MSG) either
from another node, from another sequential process running on the same node
or from the client hooked up to the local node. It then proceeds as p, but with
the data variable msg bound to the value m. The submission of data from a
client is modelled by the receipt of a message newpkt(d, dip), where the function
newpkt generates a message containing the data d and the intended destination
dip. Data is delivered to the client by deliver(data).

The internal state of a sequential process described by an expression p is
determined by p, together with a valuation ξ associating values ξ(var) to vari-
ables var maintained by this process. Valuations naturally extend to ξ-closed
expressions—those in which all variables are either bound or in the domain of ξ.
The structural operational semantics of Table 1 is in the style of Plotkin [17]
and describes how one internal state can evolve into another by performing
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P a−→ P ′

P 〈〈Q a−→ P ′ 〈〈Q
(∀a 6= receive(m))

Q a−→ Q′

P 〈〈Q a−→ P 〈〈Q′
(∀a 6= send(m))

P receive(m)−−−−−−−→ P ′ Q send(m)−−−−−→ Q′

P 〈〈Q τ−→ P ′ 〈〈Q′
(∀m ∈ MSG)

Table 2. Structural operational semantics for parallel process expressions

an action. The set Act of actions consists of broadcast(m), groupcast(D,m),
unicast(dip,m), ¬unicast(dip), send(m), deliver(d), receive(m) and internal
actions τ , for each choice of m∈ MSG, dip∈ IP, D∈P(IP) and d∈ DATA. Here,
¬unicast(dip) denotes a failed unicast. Moreover ξ[var := v] denotes the val-
uation that assigns the value v to the variable var, and agrees with ξ on all
other variables. The empty valuation ∅ assigns values to no variables. Hence
∅[vari := vi]

n
i=1 is the valuation that only assigns the values vi to the variables

vari for i = 1, . . . , n. The rule for process names in Table 1 (Line 9) says that a
process, named X, has the same transitions as the body p of its defining equa-
tion. (See [6] for details.) Finally, ξ

ϕ→ ζ says that ζ is an extension of ξ, i.e., a
valuation that agrees with ξ on all variables on which ξ is defined, and evaluates
other variables occurring free in ϕ, such that the formula ϕ holds under ζ. All
variables not free in ϕ and not evaluated by ξ are also not evaluated by ζ.

2.2 A Language for Parallel Processes

Parallel process expressions are given by the grammar

PP ::= ξ,SP | PP 〈〈 PP ,

where SP is a sequential process expression and ξ a valuation. An expression ξ, p
denotes a sequential process expression equipped with a valuation of the variables
it maintains. The process P 〈〈 Q is a parallel composition of P and Q, running
on the same network node. As formalised in Table 2, an action receive(m) of P
synchronises with an action send(m) of Q into an internal action τ . These receive
actions of P and send actions of Q cannot happen separately. All other actions of
P and Q occur interleaved in P 〈〈Q. The variables of sequential processes running
on the same node are maintained separately, and thus cannot be shared.

Though 〈〈 is a restricted version of synchronisation, which only allows infor-
mation flow “in one direction”, it reflects reality of WMNs. Usually two sequen-
tial processes run on the same node: P 〈〈Q. The main process P deals with all
protocol details of the node, e.g., message handling and maintaining the data
such as routing tables. The process Q manages the queueing of messages as
they arrive; it is always able to receive a message even if P is busy. The use
of message queueing in combination with 〈〈 is crucial, since otherwise incoming
messages would be lost when the process is busy dealing with other messages4,
which would not be an accurate model of what happens in real implementations.

4 assuming that one employs the optional augmentation of Section 2.5
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P broadcast(m)−−−−−−−−−→ P ′

ip :P :R R : *cast(m)−−−−−−−−→ ip :P ′ :R

P groupcast(D,m)−−−−−−−−−−−→ P ′

ip :P :R R∩D : *cast(m)−−−−−−−−−−→ ip :P ′ :R

P unicast(dip,m)−−−−−−−−−→ P ′ dip ∈ R

ip :P :R {dip} : *cast(m)−−−−−−−−−−→ ip :P ′ :R

P ¬unicast(dip)−−−−−−−−−→ P ′ dip 6∈ R
ip :P :R τ−→ ip :P ′ :R

P deliver(d)−−−−−−→ P ′

ip :P :R ip :deliver(d)−−−−−−−−→ ip :P ′ :R

P receive(m)−−−−−−−→ P ′

ip :P :R {ip}¬∅ : arrive(m)−−−−−−−−−−−→ ip :P ′ :R

P τ−→ P ′

ip :P :R τ−→ ip :P ′ :R
ip :P :R ∅¬{ip} : arrive(m)−−−−−−−−−−−→ ip :P :R

ip :P :R connect(ip,ip′)−−−−−−−−−→ ip :P :R ∪ {ip′} ip :P :R disconnect(ip,ip′)−−−−−−−−−−−→ ip :P :R− {ip′}

Table 3. Structural operational semantics for node expressions

2.3 A Language for Networks

We model network nodes in the context of a WMN by node expressions of the
form ip : PP :R. Here ip∈ IP is the address of the node, PP is a parallel process
expression, and R∈P(IP) is the range of the node—the set of nodes that are
currently within transmission range of ip.

A partial network is then modelled by a parallel composition ‖ of node ex-
pressions, one for every node in the network, and a complete network is a partial
network within an encapsulation operator [ ] that limits the communication of
network nodes and the outside world to the receipt and the delivery of data
packets to and from the application layer attached to the modelled protocol in
the network nodes. This yields a grammar for network expressions:

N ::= [M ] M ::= ip : PP : R | M‖M .

The operational semantics of node and network expressions of Tables 3
and 4 uses transition labels R :*cast(m), H¬K :arrive(m), connect(ip, ip′),
disconnect(ip, ip′), ip :newpkt(d, dip), ip :deliver(d) and τ . Again, m∈ MSG,
d∈ DATA, R∈P(IP), and ip, ip′ ∈ IP. Moreover, H,K ∈ P(IP) are sets of IP ad-
dresses. The action R :*cast(m) casts a message m that can be received by the
set R of network nodes. We do not distinguish whether this message has been
broadcast, groupcast or unicast—the differences show up merely in the value of
R. Recall that D∈P(IP) denotes a set of intended destinations, and dip∈ IP a
single destination. A failed unicast attempt on the part of its process is modelled
as an internal action τ on the part of a node expression. The action send(m) of
a process does not give rise to any action of the corresponding node—this ac-
tion of a sequential process cannot occur without communicating with a receive
action of another sequential process running on the same node.

The action H¬K :arrive(m) states that the message m simultaneously ar-
rives at all addresses ip∈H, and fails to arrive at all addresses ip∈K. The rules of
Table 4 let an R :*cast(m)-action of one node synchronise with an arrive(m) of
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M R : *cast(m)−−−−−−−−→M ′ N H¬K : arrive(m)−−−−−−−−−−−→ N ′

M‖N R : *cast(m)−−−−−−−−→M ′‖N ′ N‖M R : *cast(m)−−−−−−−−→ N ′‖M ′

(
H ⊆ R

K ∩R = ∅

)

M H¬K : arrive(m)−−−−−−−−−−−→M ′ N H′¬K′ : arrive(m)−−−−−−−−−−−−→ N ′

M‖N (H∪H′)¬(K∪K′) : arrive(m)−−−−−−−−−−−−−−−−−−→M ′‖N ′

M R : *cast(m)−−−−−−−−→M ′

[M ] τ−→ [M ′]

M {ip}¬K : arrive(newpkt(d,dip))−−−−−−−−−−−−−−−−−−→M ′

[M ] ip :newpkt(d,dip)−−−−−−−−−−−→ [M ′]

M a−→M ′

M‖N a−→M ′‖N
N a−→ N ′

M‖N a−→M‖N ′

M a−→M ′

[M ] a−→ [M ′]

∀a∈


ip :deliver(d), τ
connect(ip, ip′)

disconnect(ip, ip′)


.

Table 4. Structural operational semantics for network expressions

all other nodes, where this arrive(m) amalgamates the arrival of message m at
the nodes in the transmission range R, and the non-arrival at the other nodes.
The rules for arrive(m) in Table 3 state that arrival of a message at a node
happens if and only if the node receives it, whereas non-arrival can happen at
any time. This embodies our assumption that, at any time, any message that
is transmitted to a node within range of the sender is actually received by that
node. (The eighth rule in Table 3, having no premises, may appear to say that
any node ip has the option to disregard any message at any time. However, the
encapsulation operator (below) prunes away all such disregard-transitions that
do not synchronise with a cast action for which ip is out of range.)

Internal actions τ and the action ip :deliver(d) are simply inherited by node
expressions from the processes that run on these nodes, and are interleaved in
the parallel composition of nodes that makes up a network. Finally, we allow ac-
tions connect(ip, ip′) and disconnect(ip, ip′) for ip, ip′ ∈ IP modelling a change
in network topology. These actions can be thought of as occurring nondetermin-
istically, or as actions instigated by the environment of the modelled network
protocol. In this formalisation node ip′ may be in the range of node ip, meaning
that ip can send to ip′, even when the reverse does not hold. For some appli-
cations, in particular the one to AODV in [6], it is useful to assume that ip′ is
in the range of ip if and only if ip is in the range of ip′. This symmetry can be
enforced by adding the following rules to Table 3

ip :P :R connect(ip′,ip)−−−−−−−−−→ ip :P :R ∪ {ip′} ip :P :R disconnect(ip′,ip)−−−−−−−−−−−→ ip :P :R− {ip′}

ip 6∈ {ip′, ip′′}

ip :P :R connect(ip′,ip′′)−−−−−−−−−−→ ip :P :R

ip 6∈ {ip′, ip′′}

ip :P :R disconnect(ip′,ip′′)−−−−−−−−−−−−→ ip :P :R

and replacing the last three rules for (dis)connect actions by

M a−→M ′ N a−→ N ′

M‖N a−→M ′‖N ′

M a−→M ′

[M ] a−→ [M ′]

(
∀a ∈

{
connect(ip, ip′)

disconnect(ip, ip′)

})
.
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The main purpose of the encapsulation operator is to ensure that no messages
will be received that have never been sent. In a parallel composition of network
nodes, any action receive(m) of one of the nodes ip manifests itself as an action
H¬K :arrive(m) of the parallel composition, with ip∈H. Such actions can hap-
pen (even) if within the parallel composition they do not communicate with an
action *cast(m) of another component, because they might communicate with a
*cast(m) of a node that is yet to be added to the parallel composition. However,
once all nodes of the network are accounted for, we need to inhibit unmatched
arrive actions, as otherwise our formalism would allow any node at any time to
receive any message. One exception are those arrive actions that stem from an
action receive(newpkt(data, dip)) of a sequential process running on a node,
as those actions represent communication with the environment.

The encapsulation operator passes through internal actions, as well as de-
livery of data packets at destination nodes, this being an interaction with the
outside world. *cast(m)-actions are declared internal actions at this level; they
cannot be steered by the outside world. The connect and disconnect actions are
passed through in Table 4, thereby placing them under control of the environ-
ment; to make them nondeterministic, their rules should have a τ -label in the
conclusion, or alternatively the actions connect(ip, ip′) and disconnect(ip, ip′)
should be thought of as internal. Finally, actions arrive(m) are simply blocked
by the encapsulation—they cannot occur without synchronising with a *cast(m)
—except for {ip}¬K :arrive(newpkt(d, dip)) with d∈ DATA and dip∈ IP. This
action represents a new data packet d that is submitted by a client of the mod-
elled protocol to node ip, for delivery at destination dip.

2.4 Results on the Process Algebra

Our process algebra admits translation into one without data structures (al-
though we cannot describe the target algebra without using data structures):
the idea is to replace processes ξ, p by Tξ(p), where Tξ is defined inductively by
Tξ(broadcast(ms).p) = broadcast(ξ(ms)).Tξ(p),
Tξ(receive(msg).p) =

∑
m∈MSG receive(m).Tξ[msg:=m](p),

Tξ(X(exp1, . . . , expn)) = Xξ(exp1),...,ξ(expn), etc.
This requires the introduction of a process name X~v for every substitution in-
stance ~v of the arguments of X. The resulting process algebra has a structural
operational semantics in the de Simone format, generating the same transition
system—up to strong bisimilarity, ↔—as the original. It follows that ↔, and
many other semantic equivalences, are congruences on our language [19].

Theorem 2.1. Strong bisimilarity is a congruence for all operators of our lan-
guage.

This is a deep result that usually takes many pages to establish (e.g., [20]). Here
we get it directly from the existing theory on structural operational semantics,
as a result of carefully designing our language within the disciplined framework
described by de Simone [19]. ut
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Theorem 2.2. 〈〈 is associative, and ‖ is associative and commutative, up to ↔.

Proof. The operational rules for these operators fit a format presented in [5],
guaranteeing associativity up to ↔. The ASSOC-de Simone format of [5] ap-
plies to all transition system specifications (TSSs) in de Simone format, and
allows 7 different types of rules (named 1–7) for the operators in question. Our
TSS is in De Simone format; the three rules for 〈〈 of Table 2 are of types 1, 2
and 7, respectively. To be precise, it has rules 1a for a ∈ Act \ {receive(m) |
m∈ MSG}, rules 2a for a ∈ Act \ {send(m) | m∈ MSG}, and rules 7(a,b) for
(a, b) ∈ {(receive(m), send(m)) | m∈ MSG}. Moreover, the partial communi-
cation function γ : Act × Act ⇀ Act is given by γ(receive(m), send(m)) = τ .
The main result of [5] is that an operator is guaranteed to be associative, pro-
vided that γ is associative and six conditions are fulfilled. In the absence of rules
of types 3, 4, 5 and 6, five of these conditions are trivially fulfilled, and the
remaining one reduces to

7(a,b) ⇒ (1a ⇔ 2b) ∧ (2a ⇔ 2γ(a,b)) ∧ (1b ⇔ 1γ(a,b)) .

Here 1a says that rule 1a is present, etc. This condition is met for 〈〈 because
the antecedent holds only when taking (a, b) = (receive(m), send(m)) for some
m∈ MSG. In that case 1a is false, 2b is false, and 2a, 2τ , 1b and 1τ are true.
Moreover, γ(γ(a, b), c) and γ(a, γ(b, c)) are never defined, thus making γ trivially
associative. The argument for ‖ being associative proceeds likewise. Here the only
nontrivial condition is the associativity of γ, given by

γ(R :*cast(m), H¬K :arrive(m)) = γ(H¬K :arrive(m), R :*cast(m))

= R :*cast(m) ,

provided H ⊆ R and K ∩R = ∅, and

γ(H¬K :arrive(m), H ′¬K ′ :arrive(m)) = (H ∪H ′)¬(K ∪K ′) :arrive(m) .

Commutativity of ‖ follows by symmetry. ut

2.5 Optional Augmentation to Ensure Non-Blocking Broadcast

Our process algebra, as presented above, is intended for networks in which each
node is input enabled [11], meaning that it is always ready to receive any mes-
sage, i.e., able to engage in the transition receive(m) for any m ∈ MSG. In our
model of AODV [6] we ensure this by equipping each node with a message queue
that is always able to accept messages for later handling—even when the main
sequential process is currently busy. This makes our model non-blocking, mean-
ing that no sender can be delayed in transmitting a message simply because one
of the potential recipients is not ready to receive it.

However, the operational semantics does allow blocking if one would (mis)use
the process algebra to model nodes that are not input enabled. This is a logical
consequence of insisting that any broadcast message is received by all nodes
within transmission range.

Since the possibility of blocking can be regarded as a bad property of broad-
cast formalisms, one may wish to take away the expressiveness of the language



10 Fehnker, van Glabbeek, Höfner, McIver, Portmann & Tan

that allows modelling a blocking broadcast. This is the purpose of the following
optional augmentations of our operational semantics.

The first possibility is the addition of the rule
P

receive(m)−−−−−−−6→
ip:P :R

{ip}¬∅ : arrive(m)−−−−−−−−−−−→ip:P :R
.

It states that a message may arrive at a node ip regardless whether the node
is ready to receive it; if it is not ready, the message is simply ignored, and the
process running remains in the same state.

A variation on the same idea, elaborated in [6, Sect. 4.5], stems from the
Calculus of Broadcasting Systems [18]. It consists in eliminating the negative
premise in the above rule in favour of discard actions, thereby remaining within
the de Simone format of structural operational semantics. Either of these two
optional augmentations of our semantics gives rise to the same transition system.
Moreover, when modelling networks in which all nodes are input enabled—as
we do in [6]—the added rule for node expressions will never be used, and the
resulting transition system is the same whether we use augmentation or not.

2.6 Illustrative Example

To illustrate the use of our process algebra AWN, we consider a network of two
nodes a and b (a, b ∈ IP) on which the same process is running, although starting
in different states. The process describes a simple (toy-)protocol: whenever a new
data packet for destination dip “appears”,5 the data is broadcast through the
network until it finally reaches dip. A node alternates between broadcasting, and
receiving and handling a message. The data stemming from a message received
by node ip will be delivered to the application layer if the message is destined
for ip itself. Otherwise the node forwards the message. Every message travelling
through the network and handled by the protocol has the form mg(data, dip),
where data ∈ DATA is the data to be sent and dip ∈ IP is its destination. The
behaviour of each node can be modelled by:

X(ip; data, dip)
def
= broadcast(mg(data, dip)).Y(ip)

Y(ip)
def
= receive(m).([m=mg(data, dip) ∧ dip=ip] deliver(data).Y(ip)

+ [m=mg(data, dip) ∧ dip6=ip] X(ip; data, dip)) .

If a node is in a state X(ip; data, dip), where ip ∈ IP is the node’s stored value
of its own IP address, it will broadcast mg(data, dip) and continue in state Y(ip),
meaning that all information about the message is dropped. If a node in state
Y(ip) receives a messagem—a value that will be assigned to the variable m—it has
two ways to continue: process [m=mg(data, dip)∧ dip=ip] deliver(data).Y(ip)
is enabled if the incoming message has the form mg(data, dip) and the node
itself is the destination of the message (dip=ip). In that case the data distilled
from m will be delivered to the application layer, and the process returns to
Y(ip). Alternatively, if [m=mg(data, dip) ∧ dip6=ip], the process continues as
X(ip; data, dip), which will then broadcast another message with contents data
and dip. Note that calls to processes use expressions as parameters.

5 In this small example, we assume that new data packets just appear “magically”; of
course one could use the message newpkt(data,dip) instead.
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Let us have a look at three scenarios. First, assume that the nodes a and b
are within transmission range of each other; node a in state X(a; d, b), and node b
in Y(b). This is formally expressed as [a : X(a; d, b) :{b} ‖ b : Y(b) :{a}], although for
compactness of presentation, below we just write [X(a; d, b) ‖ Y(b)]. In this case,
node a broadcasts the message mg(d, b) and continues as Y(a). Node b receives
the message, delivers d (after evaluation of the message) and continues as Y(a).
Formally, we get transitions from one state to the other:

[X(a; d, b) ‖ Y(b)] a:*cast(mg(d,b))−−−−−−−−−−→ τ−→ b:deliver(d)−−−−−−−→ [Y(a) ‖ Y(b)].

Here, the τ -transition is the action of evaluating the first of the two guards of a
process Y, and we left out the two intermediate expressions.

Second, assume that the nodes are not within transmission range, with the
initial process of a and b the same as above; formally [a : X(a; d, b) : ∅ ‖ b : Y(b) : ∅].
As before, node a broadcasts mg(d, b) and continues in Y(a); but this time the
message is not received by any node; hence no message is forwarded or delivered
and both nodes end up running process Y.

For the last scenario, we assume that a and b are within transmission range
and that they have the initial states X(a; d, b) and X(b; e, a). Without the aug-
mentation of Section 2.5, the network expression [X(a; d, b) ‖ X(b; e, a)] admits no
transitions at all; neither node can broadcast its message, because the other node
is not listening. With the optional augmentation, assuming that node a sends
first:

[X(a; d, b) ‖ X(b; e, a)] a:*cast((mg(d,b))−−−−−−−−−−→ [Y(a) ‖ X(b; e, a)]
b:*cast(mg(e,a))−−−−−−−−−−→ τ−→ a:deliver(e)−−−−−−−→ [Y(a) ‖ Y(b)].

Unfortunately, node b is initially in a state where it cannot receive a message, so
a’s message “remains unheard” and b will never deliver that message. To avoid
this behaviour, and ensure that both messages get delivered, as happens in real
WMNs, a message queue can be introduced (see Section 3.2). Using a message
queue, the optional augmentation is not needed, since any node is always in a
state where it can receive a message.

3 Routing Protocols

The features of our process algebra were largely determined by what we needed
to enable a complete and accurate formalisation of wireless network protocols
and their properties.

We use the proposed algebra to formally model and reason about the Ad
hoc On-demand Distance Vector (AODV) routing protocol [16]. Due to lack of
space, we can only briefly report on our formalisation and the properties proved.
All details can be found in [6].

Since routing protocols for WMNs are based on common concepts in wireless
networks in general, such as local broadcast, we do expect that our process
algebra can easily be used to model other wireless network protocols.
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Fig. 1. Example network topology

3.1 Ad-Hoc On-Demand Distance Vector Routing Protocol

AODV [16] is a widely-used routing protocol designed for MANETs, and is one of
the four protocols currently standardised by the IETF MANET working group6.
It also forms the basis of new WMN routing protocols, including the upcoming
IEEE 802.11s wireless mesh network standard [10].

AODV is a reactive protocol: routes are established only on demand. A
route from a source node s to a destination node d is a sequence of nodes
[s, n1, . . . , nk, d], where n1, . . . , nk are intermediate nodes located on the path
from s to d. Its basic operation can best be explained using a simple example
topology shown in Fig. 1(a), where edges connect nodes within transmission
range. We assume node s wants to send a data packet to node d, but s does not
have a valid routing table entry for d. Node s initiates a route discovery mecha-
nism by broadcasting a route request (RREQ) message, which is received by s’s
immediate neighbours a and b. We assume that neither a nor b knows a route
to the destination node d.7 Therefore, they simply re-broadcast the message, as
shown in Fig. 1(b). Each RREQ message has a unique identifier which allows
nodes to ignore duplicate RREQ messages that they have handled before.

When forwarding the RREQ message, each intermediate node updates its
routing table and adds a “reverse route” entry to s, indicating via which next
hop the node s can be reached, and the distance in number of hops. Once the
first RREQ message is received by the destination node d (we assume via a), d
also adds a reverse route entry in its routing table, saying that node s can be
reached via node a, at a distance of 2 hops.

Node d then responds by sending a route reply (RREP) message back to
node s, as shown in Fig. 1(c). In contrast to the RREQ message, the RREP is
unicast, i.e., it is sent to an individual next hop node only. The RREP is sent
from d to a, and then to s, using the reverse routing table entries created during
the forwarding of the RREQ message. When processing the RREP message, a
node creates a “forward route” entry into its routing table. For example, upon
receiving the RREP via a, node s creates an entry saying that d can be reached
via a, at a distance of 2 hops. At the completion of the route discovery process,
a route has been established from s to d, and data packets can start to flow.

In the event of link and route breaks, AODV uses route error (RERR) mes-
sages to inform affected nodes. Sequence numbers are another important aspect
of AODV, and are used to indicate the freshness of routing table entries for the
purpose of preventing routing loops.

6 http://datatracker.ietf.org/wg/manet/charter/
7 In case an intermediate node knows a route to d, it directly sends a route reply back.

http://datatracker.ietf.org/wg/manet/charter/
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Type Variables Description
IP ip, dip, oip, rip, sip, nhip node identifiers
SQN sn, dsn, rsn sequence numbers
K dsk sequence-number-status flag
F flag route validity
IN hops hop counts
R r routing table entries
RT rt routing tables
RREQID rreqid request identifiers
P pending-request flag
STORE store store of queued data packets
MSG msg messages
[MSG] msgs message queues
P(IP) pre sets of identifiers (precursors, destinations, . . . )
IP ⇀ SQN dests sets of destinations with sequence numbers
P(IP× RREQID) rreqs sets of request identifiers with originator IP

Constant/Predicate Description
0 : SQN, 1 : SQN unknown, smallest sequence number
< ⊆ SQN× SQN strict order on sequence numbers
kno, unk : K constants to distinguish known and unknown sqns
val, inv : F constants to distinguish valid and invalid routes
pen, non-pen : P constants to distinguish (non-)pending RREQs
[ ] : [MSG] empty queue

Operator Description

setP : STORE× IP× P→ STORE set the pending-request flag
( , , , , , , ) : generates a routing table entry

IP×SQN×K×F× IN×IP×P(IP)→ R
inc : SQN→ SQN increments the sequence number
sqn : RT× IP→ SQN returns the sequence number of a particular route
flag : RT× IP ⇀ F returns the validity of a particular route
dhops : RT× IP ⇀ IN returns the hop count of a particular route
nhop : RT× IP ⇀ IP returns the next hop of a particular route
precs : RT× IP ⇀ P(IP) returns the set of precursors of a particular route
vD, kD : RT→ P(IP) returns the set of valid, known destinations
addpreRT : RT× IP× P(IP) ⇀ RT adds a set of precursors to an entry inside a table
update : RT× R ⇀ RT updates a routing table with a route (if fresh enough)
invalidate : RT× (IP ⇀ SQN)→ RT invalidates a set of routes within a routing table
rrep : IN×IP× SQN× IP× IP→ MSG generates a route reply
rerr : (IP ⇀ SQN)× IP→ MSG generates a route error message

Table 5. Data structure

3.2 A Formal Model of AODV

Our formalisation of AODV is a faithful rendering of the IETF’s specification [16]
with the exception of time and any optional features. Additionally, we model
the submission, forwarding and delivery of data packets—this is not part of the
AODV standard, but crucial to trigger the route discovery process of AODV.

In this section we give an overview of the formal model, setting out the details
only for the RREP message handling. Full details are available in [6, Sect. 6].

Table 5 lists the types and operators needed for the formalisation presented
in this section. For example, RT is the type of routing tables—modelled as set of
entries (dip, dsn, dsk,flag, hops,nhip, pre), each providing information on a route
of length hops with ultimate destination dip. The next hop address on that
route is nhip. The value dsn is a sequence number, intended to describe the
“freshness” of this entry, with dsk a Boolean indicating whether or not that
number is known to be an up-to-date indicator of the freshness of the entry.
The values flag and pre, respectively, describe the validity of the entry, and its
precursors—a set of nodes that “rely” on it to ensure the validity of their own
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entries. In a routing table rt there is at most one entry for each destination
dip; sqn(rt, dip) denotes the sequence number of that entry and likewise for the
operators flag and dhops. Another example is update(rt, r), which updates a
routing table rt with an entry r. This is one of the major activities of AODV.
It adds r := (dip, dsn, dsk,flag, hops,nhip, pre) to the routing table rt if no entry
for dip is present. The existing entry is overwritten by r if the latter’s sequence
number is larger (dsn > sqn(rt, dip)) or, in case of equal sequence numbers, the
existing entry is invalid, or the new hop count smaller (dsn = sqn(rt, dip) ∧
(flag(rt, dip) = inv ∨ hops < dhops(rt, dip))).

A network is modelled as a parallel composition of its constituent nodes.8

For all nodes of a network—characterised by a set IP⊆ IP of unique identifiers
ip ∈ IP—the node expression ip : P : R is initialised with the parallel process

P := ξ, AODV(ip, rt, sn, rreqs, store) 〈〈 ζ, QMSG(msgs) .

The sequential process AODV(ip, rt, sn, rreqs, store) deals with the detailed
message handling of the node, manages its routing table rt, stores its own
sequence number in sn, records all route requests seen so far in rreqs and
maintains in store packets to be sent. The process QMSG(msgs) manages the
queueing of messages as they arrive; it is always able to receive a message even if
AODV is busy updating rt, forwarding requests etc. Whenever a message arrives
QMSG(msgs) appends it to the queue msgs, passing it on to AODV whenever it
can. The composition 〈〈 is crucial here to express this “buffering mechanism”
occurring in actual implementations of AODV.

Any node is initialised with its own identifier stored in the variable ip, an
empty routing table, the sequence number 1, and empty sets of seen route re-
quests and stored data packets. Also the queue of received messages is empty.

The process AODV receives messages from QMSG and then, depending on their
types, delegates the response to the appropriate process : PKT (for data), RREQ
(for requests), RREP (for replies) and RERR (for errors). In this paper we give only
the specification of RREP (cf. Process 1); the specifications of the other processes
can be found in [6, Sect. 6].

Usually, RREP updates the routing table with information from the route reply
message rrep(hops, dip, dsn, oip, sip), meaning that it is a reply to a former
request initiated by oip for destination dip, that it was sent by (1-hop neighbour)
sip, and that it takes hops hops from sip to dip. The sequence number dsn

measures the “freshness” of this information. In case the current node is oip,
receipt of this message establishes a route from oip to dip. Only when the new
information leads to an actual update of the routing table (Line 2), and the
current node is not the final destination oip of the route reply (Line 9), the
RREP message will be forwarded (Line 15). In case the unicast is unsuccessful
(Line 17), the link connecting the current node to nhop(rt, oip) must be broken
and the process initiates the procedure for error reporting (Lines 18–22). This
involves determining which other nodes are “interested” in that link, because it
contributes to their routes. Those interested nodes are stored in the precursor lists

8 Here, associativity and commutativity of ‖ (Theorem 2.2) is essential.
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Process 1 RREP handling

RREP(hops , dip , dsn , oip , sip ; ip , rt , sn , rreqs , store)
def
=

1. /*routing that describes the handling of a received route reply*/
2. [ rt 6= update(rt, (dip, dsn, kno, val, hops+1, sip, ∅)) ] /*the routing table has to be updated*/
3. (
4. [[rt := update(rt, (dip, dsn, kno, val, hops + 1, sip, ∅))]]
5. [ oip = ip ] /*this node is the originator of the corresponding RREQ*/
6. [[store := setP(store, dip, non-pen)]] /*set queue-flag to non-pending*/
7. /*a packet may now be sent; this is done in the process AODV*/
8. AODV(ip,sn,rt,rreqs,store)
9. + [ oip 6= ip ] /*this node is not the originator; forward RREP*/

10. (
11. [ oip ∈ vD(rt) ] /*valid route to oip*/
12. /*add next hop towards oip as precursor and forward the route reply*/
13. [[rt := addpreRT(rt, dip, {nhop(rt, oip)})]]
14. [[rt := addpreRT(rt, nhop(rt, dip), {nhop(rt, oip)})]]
15. unicast(nhop(rt,oip),rrep(hops + 1,dip,dsn,oip,ip)) .
16. AODV(ip,sn,rt,rreqs,store)
17. I /*If the packet transmission is unsuccessful, a RERR message is generated*/
18. [[dests := {(rip, inc(sqn(rt, rip))) | rip ∈ vD(rt) ∧ nhop(rt, rip) = nhop(rt, oip)}]]
19. [[rt := invalidate(rt, dests)]]
20. [[pre :=

⋃
{precs(rt, rip) | (rip, ∗) ∈ dests}]]

21. [[dests := {(rip, rsn) | (rip, rsn) ∈ dests ∧ precs(rt, rip) 6= ∅]]
22. groupcast(pre,rerr(dests,ip)) . AODV(ip,sn,rt,rreqs,store)
23. + [ oip 6∈ vD(rt) ] /*no valid route to oip*/
24. AODV(ip,sn,rt,rreqs,store)
25. )
26. )
27. + [ rt = update(rt, (dip, dsn, kno, val, hops+ 1, sip, ∅)) ] /*the routing table is not updated*/
28. (
29. [ oip = ip ] /*this node is the originator of the corresponding RREQ*/
30. [[store := setP(store, dip, non-pen)]] /*set queue-flag to non-pending*/
31. AODV(ip,sn,rt,rreqs,store)
32. + [ oip 6= ip ] /*this node is not the originator; drop RREP*/
33. AODV(ip,sn,rt,rreqs,store)
34. )

inside rt and an error message is sent to the nodes it finds there via the action
groupcast. Before that, the node marks as invalid all routes in its routing table
which use the failed link, and increments their sequence numbers (Lines 18–19).

3.3 Invariants

All processes except QMSG maintain the five data variables ip, sn, rt, rreqs and
store. Next to that QMSG maintains the variable msgs. Hence, these 6 variables
can be evaluated at any time. Moreover, every node expression in the transition
system looks like

ip : (ξ, P 〈〈 ζ, QMSG(msgs)) : R ,

where P is a state either in the process AODV, PKT, RREQ, RREP or RERR. Hence
the state of the transition system for a node ip is determined by the process P ,
the range R, and the two valuations ξ and ζ. If a network consists of a (finite) set
IP ⊆ IP of nodes, a reachable network expression N is an encapsulated parallel
composition of node expressions—one for each ip ∈ IP. To distil current infor-
mation about a node from N , we define the following projections for valuation
ξ and range R:



16 Fehnker, van Glabbeek, Höfner, McIver, Portmann & Tan

Rip
N :=R, where ip : (∗, ∗ 〈〈 ∗, ∗) :R is a node expression of N ,

ξipN := ξ, where ip : (ξ, ∗ 〈〈 ∗, ∗) : ∗ is a node expression of N .

For example, ξipN (rt) evaluates the current routing table maintained by node ip
in the network expression N .

Proposition 3.1. If a route reply is sent by a node ipc, different from the des-
tination of the route, then the content of ipc’s routing table must be consistent
with the information inside the message, i.e., if

N R:*cast(rrep(hopsc,dipc,dsnc,∗,ipc))−−−−−−−−−−−−−−−−−−−−−−−→ N ′

then dipc ∈ kD(ξ
ipc
N (rt)), sqn(ξ

ipc
N (rt), dipc) = dsnc, dhops(ξ

ipc
N (rt), dipc) = hopsc,

and flag(ξ
ipc
N (rt), ipc) = val.

Proof. We have to check all cases where a route reply is sent. Here we restrict
ourselves to RREP; the entire proof can be found in [6, Prop. 7.10(b)]. A route re-
ply occurs only in Line 15, where a message ξ(rrep(hops+ 1, dip, dsn, oip, ip))
is unicast. Here ξ is the current valuation ξipN .

Hence hopsc := ξ(hops)+1, dipc := ξ(dip), dsnc := ξ(dsn), ipc := ξ(ip) = ip

and ξ
ipc
N = ξ. Using (ξ(dip), ξ(dsn), kno, val, ξ(hops)+1, ξ(sip), ∅) as new entry,

the routing table is updated at Line 4. With exception of its precursors, which
are irrelevant here, the routing table does not change between Lines 4 and 15;
nor do the values of the variables hops, dip and dsn. Line 2 guarantees that
during the update in Line 4, the new entry is inserted into the routing table, so

sqn(ξ(rt), ξ(dip)) = ξ(dsn) = dsnc
dhops(ξ(rt), ξ(dip)) = ξ(hops) + 1 = hopsc
flag(ξ(rt), ξ(dip)) = ξ(val) = val . ut

The classical notion of loop freedom is a term that informally means that
“a packet never goes round in cycles without (at some point) being delivered”.
This dynamic definition is not only hard to formalise, it is also too restrictive a
requirement for AODV. There are situations where packets are sent in cycles, but
which are not considered “bad”. This can happen when the destination is highly
mobile and the packet “follows” the destination and keeps travelling through
the network. Therefore, the sense of loop freedom is much better captured by
a static invariant, saying that at any given time the collective routing tables of
the nodes do not admit a loop.

To this end we define the routing graph of network expression N with re-
spect to destination dip by RN (dip) :=(IP, E), where all nodes of the net-
work form the set of vertices and there is an arc (ip, ip′) ∈ E iff ip 6= dip and
(dip, ∗, ∗, val, ∗, ip′, ∗)∈ ξipN (rt).

An arc in a routing graph states that ip′ is the next hop on a valid route
to dip known by ip; a path in a routing graph describes a route towards dip
discovered by AODV. We say that a network expression N is loop free if the
corresponding routing graphs RN (dip) are loop free, for all dip∈ IP. A routing
protocol, such as AODV, is loop free iff all reachable network expressions are
loop free.

To prove loop freedom of AODV, we first establish a useful invariant.
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Theorem 3.2. Along a path towards a destination dip in the routing graph of
a reachable network expression N , until it reaches either dip or a node without
a valid routing table entry to dip, either the sequence number strictly increases,
or this number stays the same and the hop count strictly decreases.

dip ∈ vD(ξipN (rt)) ∩ vD(ξnhipN (rt)) ∧ nhip 6= dip

⇒ sqn(ξipN (rt), dip) < sqn(ξnhipN (rt), dip) ∨
(
sqn(ξipN (rt), dip) = sqn(ξnhipN (rt), dip)

∧ dhops(ξipN (rt), dip) > dhops(ξnhipN (rt), dip)
)
,

where N is a reachable network expression and nhip := nhop
ip
N (dip) is the IP

address of the next hop.

The proof uses Proposition 3.1; it can be found in [6].
From this, we immediately conclude that AODV is loop free.
More precisely, our AWN-specification of AODV is loop free. It is our belief

that, up to the abstraction of time and any optional features presented in [16],
it reflects precisely the intention and the meaning of the RFC. However, when
formalising AODV, we came across ambiguities, which yield different possible
interpretations. Such interpretations can be seen as variants of AODV and, as
we discovered, only a few of them are loop free. Since loop freedom is a sine qua
non for routing protocols like AODV, we endeavour to resolve the ambiguities
as much as possible by discarding the interpretations that lead to loops.

We briefly explain one of the problems found. A crucial requirement in the
proof of Theorem 3.2 is that sequence numbers in routing table entries are never
decreased, and increased upon invalidating the entry. Following the RFC liter-
ally, a “node initiates processing for a RERR message”9, “if it receives a RERR
from a neighbor”9. For every destination to be invalidated the “destination se-
quence number”9 is “copied from the incoming RERR”9. We have shown that
this copying in combination with self-entries (entries for ip in ip’s own routing
table)10 violate the above requirement and yield loops; a detailed example is
given in [6]. In our specification this behaviour does not occur since we slightly
modified the invalidation procedure [6, Sect. 5] to ensure an increase of sequence
number for an invalidated entry, in the spirit of Section 6.2 of the RFC.

3.4 Formalising Temporal Properties

Our formalism enables verification of correctness properties. While some prop-
erties, such as loop freedom, are invariants on the routing tables, others require
reasoning about the temporal order of transitions. We use Computation Tree
Logic (CTL) to specify and discuss one such property, namely packet delivery.

CTL uses the path quantifiers A and E, and the temporal operators G,F,X,
and U. The (state) formula Aφ is satisfied in a state if all paths starting in that
state satisfy φ, while Eφ is satisfied if some path satisfies φ. The (path) formulas

9 Section 6.11 of the RFC [16]
10 In our model we allow self-entries, since they are not explicitly forbidden; they also

occur in real implementations, e.g., Kernel AODV [1]; they are forbidden by others
such as AODV-UU [2].
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Gφ,Fφ and Xφ mean that φ holds globally in all states, in some state, and
in the next state of a path, respectively. The until φUψ means that, until a
state occurs along the path that satisfies ψ, property φ has to hold. In CTL
a temporal operator is always immediately preceded by a path quantifier. Here
CTL is interpreted on the unfolding into a tree of the transition system generated
by our operational semantics.

The property of packet delivery says that if a client submits a packet, it will
eventually be delivered to the destination. However, in a WMN it is not guar-
anteed that this property holds, since nodes can get disconnected, e.g. due to
node mobility. A useful formulation has to be weaker. AODV should guarantee
packet delivery only if an end-to-end route exists long enough. More precisely,
AODV should guarantee delivery of a packet submitted by a client at node oip
with destination dip, when oip is connected to dip and afterwards no link in the
network gets disconnected. This means that for any pair oip and dip, and any
data d, the following should hold:

AG(oip : newpkt(d, dip) ∧ connected∗(oip, dip))
⇒ AF(disconnect(∗, ∗) ∨ (dip : deliver(d))) .

oip :newpkt(d, dip) models submission of a new packet at oip, dip :deliver(d)
that the destination receives it, and disconnect(∗, ∗) the action of disconnect-
ing. We treat these transitions as predicates, with the understanding that along
a path the state immediately succeeding such a transition satisfies it. The pred-
icate connected∗(oip, dip) is true if there are exist nodes ip0, . . . , ipn such that

ip0 = oip, ipn = dip and ipi ∈ R
ipi−1

N . for i= 1, . . . , n.
Surprisingly, AODV does not satisfy this property. One cause is that AODV

nodes do not forward route replies from which they do not learn anything new.
However, the information may be vital for the potential recipients of the for-
warding. See [6, Sect. 8] for further discussion of a counterexample.

4 Related Work

Several process algebras for MANETs have been proposed: CBS# [15], CWS [13],
CMAN [8], CMN [12], the ω-calculus [20] and RBPT [7]. All these languages, as
well as ours, feature a form of local broadcast, in which a single message, sent
by one node, can be received by other nodes within transmission range, given an
arbitrary topology. In CWS the topology is fixed, whereas the other formalisms
deal with arbitrary changes in topology.

The latter four formalisms model a lossy broadcast, in which a potential
receiver may lose a message; in CBS# and CWS, any node within range must
receive a message m sent to it, provided the node is ready to receive it, i.e., in a
state that admits a transition receive(m). This proviso makes all these calculi
non-blocking, meaning that no sender can be delayed in sending a message simply
because one of the potential recipients is not ready to receive it.

The syntax of CBS# and CWS does not permit the construction of mean-
ingful nodes that are always ready to receive a message. Hence our model is the
first that assumes that any message is received by a potential recipient within
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range. It is this feature that allows us to evaluate whether a protocol satisfies
the packet delivery property. Any routing protocol formalised in any of the other
formalisms would automatically fail to satisfy such a property.

Besides this ensured broadcast, the novel conditional unicast operator chooses
a continuation process dependent on whether the message can be delivered. This
operator is essential for the correct formalisation of AODV. In practice such an
operator may be implemented by means of an acknowledgement mechanism;
however, this is done at the link layer, from which the AODV specification [16],
and hence our formalism, abstracts. One could formalise a conditional unicast as
a standard unicast in the scope of a priority operator [4]; however, our operator
prioritises, while allowing an operational semantics within the de Simone format.

Although our treatment of data structures follows the classical approach of
universal algebra, and is in the spirit of formalisms like µCRL [9], we have not
seen a process algebra that freely mixes in imperative programming constructs
like variable assignment. Yet this helps to properly capture AODV and other
routing protocols.

Our formalisation of AODV [6], which is partly shown here, has grown from
elaborating a partial formalisation of AODV in [20]. The features of our process
algebra were largely determined by what we needed to enable a complete and
accurate formalisation of this protocol. We conjecture that the same formalism
is also applicable to a wide range of other wireless protocols.

Loop freedom is a crucial property of network protocols, commonly claimed
to hold for AODV [16]. In [6] we show that several interpretations of AODV—
consistent ways to revolve the ambiguities in the RFC—fail to be loop free, while
proving loop freedom of others. A preliminary draft of AODV has been shown to
be not loop free (for other reasons) in [3]. In [21] a proof sketch of loop freedom
for a restricted version of AODV is given, using an interactive theorem prover.

5 Conclusion and Outlook

We have proposed a novel algebra covering major aspects of WMN routing pro-
tocols. We have accurately modelled the core of AODV, a widely used protocol
of practical relevance. In contrast to other works, our model covers the crucial
aspect of data handling, such as maintaining routing table information. We have
formalised and proven some of AODV’s general properties. Our model provides,
in combination with abstraction from lower network layers, a practical and pow-
erful tool for WMN protocol specification, evaluation and verification.

Our analysis of AODV uncovered several ambiguities in the RFC [16]. Finding
ambiguities and unexpected behaviour is not uncommon for RFCs in general.
This shows that the specification of a reasonably rich protocol such as AODV
cannot be described precisely and unambiguously by simple (English) text only;
formal methods are indispensable for this purpose.

More detailed analysis requires the addition of time and probability: the
former to cover aspects such as AODV’s handling (deletion) of stale routing
table entries and the latter to model the probability associated with lossy links.
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