
Hyper Tableaux with Equality

Peter Baumgartner1, Ulrich Furbach2, and Björn Pelzer2

1 NICTA, Canberra, Australia, Peter.Baumgartner@nicta.com.au
2 Universität Koblenz-Landau, Koblenz, Germany, {uli,bpelzer}@uni-koblenz.de

Abstract. In most theorem proving applications, a proper treatment of equa-
tional theories or equality is mandatory. In this paper we show how to integrate
a modern treatment of equality in the hyper tableau calculus. It is based on split-
ting of positive clauses and an adapted version of the superposition inference
rule, where equations used for paramodulation are drawn (only) from a set of
positive unit clauses, the candidate model. The calculus also features a generic,
semantically justified simplification rule which covers many redundancy elim-
ination techniques known from superposition-style theorem proving. Our main
theoretical result is the soundness and completeness of the calculus. The calculus
is implemented, and we also report on practical experiments.

1 Introduction

Tableau calculi play an important role in theorem proving, knowledge representation
and in logic programming. Yet, for automated first-order theorem proving the influ-
ence of tableau calculi decreased in the last decade. The CASC competition [SS06] is
dominated by saturation-based provers, and a tableau system like SETHEO, which was
several times among CASC winners, is not even entering the competition any more. One
of the reasons can be seen in the problems tableau calculi have with efficient handling
of equality. Of course there are numerous papers on equality handling in tableau cal-
culi. Various approaches are discussed, for instance, in [Bec97]. It is not clear, however,
whether they are a basis for high performance theorem proving. This has to do with the
usage of free variables in most semantic tableau calculi. The nature of these free vari-
ables, their rigidness, seems to be a major source for difficulties to define efficient proof
procedures, even without equality. For instance, proof procedures often suffer from ex-
cessive backtracking and enumerate whole tableaux in an iterative-deepening fashion,
typically based on the number of γ-rule applications in a tableau.

To avoid the problems of rigid variables for equality reasoning, in [DV96] the au-
thors combine a superposition based equality reasoning system with a top down se-
mantic tableau reasoner. Yet, certain substitutions still have to be applied globally to all
variables in the tableau, which thus are still treated rigidly. As with most free-variable
tableau calculi, the important property of proof confluence does not hold or is not known
to hold.

Other free-variable tableau methods are based on solving (simultaneous) rigid E-
unifiability problems [DV98] but still face the same problem of not exploiting proof
confluence.

A more recent stream of equality handling in free-variable tableaux has been initi-
ated by Martin Giese. It is (also) motivated by addressing the excessive backtracking of
the methods mentioned above. In [Gie02] the author gives a calculus for free variable
tableaux with superposition-type inference and proves completeness by adapting the
model generation technique for superposition [BG98,NR01]. One improvement, com-
pared with [DV96] and other free-variable methods is that unification constraints lead-
ing to a closed tableau are now held locally together with tableau literals. This allows
avoiding backtracking over the tableaux generated in a derivation, but instead amounts
to combine local substitutions in a compatible way for the purpose to witness a closed
tableau (see [Gie01] for details). A drawback of this approach is its potentially high
memory consumption, as, in essence, it does not admit a one-branch-at-a-time proof
procedure.

In [Gie03], simplification rules and reasoning with universal variables3 are added
to the framework of [Gie02], but without equality. Putting equality aside, the most rel-
evant contribution in [Gie03] from the viewpoint of this paper is the instantiation of
the calculus there to a variant of the hyper tableau calculus [BFN96].4 An important
difference to [BFN96] is that [Gie03] uses rigid variables for variables that are shared
between positive literals in clauses. For instance, a clause like ∀x,y (p(x,y)∨q(x)) then
is treated by β-expansion with the formulas ∀y p(X ,y) and q(X), where X is a rigid vari-
able shared between branches. In contrast, the hyper tableau of [BFN96] would branch
out on the formulas ∀y p(t,y) and q(t), where t is some “guessed” ground term of the
input signature.5

In this paper we stick with the hyper tableau calculus and its “obviously inefficient”
approach of guessing ground terms for shared variables, as opposed to using free vari-
ables. More precisely, we show how to incorporate efficient ordering-based equality
inference rules and redundancy elimination techniques from the superposition calcu-
lus [BG98,NR01] in a tableau calculus. We believe the hyper tableau calculus [BFN96]
is a good basis for doing that, for the following reasons.

– All variables in a hyper tableau are universally quantified in the branch literal they
occur. This facilitates the adaption of the superposition framework and enables
powerful redundancy criteria.

– As far as we know, none of the free-variable calculi mentioned above can be used
as a non-trivial decision procedure for clause logic without non-nullary function
symbols (i.e. disjunctive Datalog). The same holds true for any known resolution
refinement.
On the other hand, our calculus is a non-trivial decision procedure for this fragment
(with equality), which captures the complexity class NEXPTIME. Many practically

3 Variables that are local to a clause or literal and that are universally quantified.
4 Hyper tableaux is a tableau model generation method, which is applied to clauses and needs

only one inference rule, which can be seen as a tableaux β-rule. It is applied in a “hyper-way”,
such that all negative literals are “resolved away” by positive literals in the branch. The remain-
ing literals are positive and are splitted then. This basis idea stems from SATCHMO [MB88],
which is extended in hyper tableau by making better use of universally quantified variables.

5 Notice that Resolution- or Superposition calculi, also those with Splitting [Wei01], reason with
the clause ∀x,y (p(x,y)∨q(x)).

2

relevant problems are NEXPTIME-complete, e.g. satisfiability of SHOIQ knowl-
edge bases and first-order model expansion (relevant for constraint solving).

– Advanced techniques are available to restrict the domain of the ground terms (like
t above) to be guessed. For instance, the preprocessing technique in [BS06] can
readily be used in conjunction with our calculus without any change.

– Specific to the theory of equality and in presence of simplification inference rules,
that domain can even be further reduced. This occasionally shows unexpected (pos-
itive) effects, leading to termination of our system, where e.g. superposition based
systems don’t terminate. See Section 5 for details.

– The hyper tableau calculus is the basis of the KRHyper prover, which is used in
various applications [FO06,BF03,BFGHS04, e.g.] from which we learned that an
efficient handling of equality would increase its usability even more.

The closest approximation of the superposition calculus to E-hyper tableaux is ob-
tained by using a selection function that selects all negative literals in a clause and using
a prover that supports splitting (of variable-disjoint subclauses) like SPASS [Wei01].
Even then, there remain differences. We discuss these issues in Section 5.

The article [LS02] discusses various ways of integrating equality reasoning in dis-
connection tableaux. It includes a variant based on ordered paramodulation, where
paramodulation inferences are determined by inspecting connections between literals
of two clauses. Only comparably weak redundancy criteria are available. Related to
that calculus, in [BT05], the model evolution calculus is extended by equality. Model
evolution can be seen as a lifting of DPLL to the first order case together with a sophisti-
cated model construction method, which also admits semantically justified redundancy
elimination criteria. Both caluli belong to the family of instance-based methods, which
are conceptually rather different to resolution- or tableau calculi as considered here.

This paper is organised as follows: we start with preliminaries in the following sec-
tion. In Section 3 we present superposition inference rules for clauses together with
a static completeness result. In Section 4 we introduce E-hyper tableaux and correct-
ness and completeness properties. In Section 5 we consider improvements for splitting
and discuss the relation with splitting in the SPASS prover. Section 6 describes the im-
plementation of the E-KRHyper system. Detailed proofs of all results are given in an
appendix.

2 Preliminaries

Most of the notions and notation we use in this paper are the standard ones in the field.
We report here only notable differences and additions.

We will use an infinite sets of variables X , and x and y denote elements of X . We fix
a signature Σ throughout the paper. Unless otherwise specified, when we say term we
will mean Σ-term. If t is a term we denote by Var(t) the set of t’s variables. A term t is
ground iff Var(t) = /0.

A substitution ρ is a renaming (on X) iff it is a bijection of X onto itself. We say
that s is a variant of t, and write s ∼ t, iff there is a renaming ρ such that sρ = t. If s

3

and t are two terms, we write s & t, iff there is a substitution σ such that sσ = t.6 The
notation s[t]p means that the term t occurs in the term s at position p, as usual.

All of the above is extended from terms to literals in the obvious way.
In this paper we restrict to equational clause logic. Therefore, and essentially with-

out loss of generality, we assume that the only predicate symbol in Σ is '. Any atom
A that is originally not an equation can be represented as the equation A ' t, where t
is some distinguished constant not appearing elsewhere. (But we continue to write, say,
P(a) instead of the official P(a)' t.) This move is harmless, in particular from an oper-
ational point of view.7 An atom then is always an equation, and a literal then is always
an equation or the negation of an equation. Literals of the latter kind, i.e., literals of the
form (s' t) are also called negative equations and generally written s 6' t instead. We
call a literal trivial if it is of the form t ' t or t 6' t.

We denote atoms by the letters A and B, literals by the letters K and L and by L the
complement of a literal L.

A clause is a finite multiset of literals, written as a disjunction A1∨ ·· ·∨Am∨B1∨
·· · ∨Bn or an implication A1, . . . ,Am ← B1, . . . ,Bn, where m,n ≥ 0. Each atom Ai, for
i = 1, . . . ,m, is called a head atom, and each atom B j, for j = 1, . . . ,n, is called a body
atom. We write A,A ← B,B to denote any clause whose head atoms are {A} ∪ A and
whose body atoms are {B} ∪ B , for some atoms A and B, and multisets of atoms A and
B . As usual, clauses are implicitly universally quantified.

We suppose as given a reduction ordering � that is total on ground Σ-terms. 8 The
non-strict ordering induced by � is denoted by �, and ≺ and � denote the converse
of � and �. The reduction ordering � has to be extended to rewrite rules, equations
and clauses. Following usual techniques [BG98,NR01, e.g.], to a given ground clause
A ← B we associate to each head atom s' t in A the multiset {s, t} and to each body
atom u ' v in B the multiset {u,u,v,v}. Two atoms then (head or body) are compared
by using the multiset extension of �, which is also denoted by �. This will have the
effect of a lexicographic ordering, where, first, the bigger terms of two equations are
compared, then the sign (body atoms are bigger) and at last the smaller sides of the
equations. To compare clauses the two-fold multiset extension of � is used, likewise
denoted by �. For the purpose of comparing ground rewrite rules they are treated as
positive unit clauses.

A central notion for hyper tableaux is that of a pure clause [BFN96]: a clause
A1, . . . ,Am ← B1, . . . ,Bn is called pure iff Var(Ai) ∩ Var(A j) = /0, for all 1 ≤ i, j ≤ m
with i 6= j. That is, in a pure clause variables are not shared among head literals. (Below
we will need this concept for positive clauses only.) Any substitution that turns a clause
C into a pure instance Cπ is called a purifying substitution (for C).

6 Note that many authors would write s . t in this case.
7 Strictly speaking, one has to move to a two-sorted signature with different signatures for func-

tion symbols and predicate symbols, and all variables are of the sort of terms. We ignore this
aspect throughout the paper because it does not cause any complications.

8 A reduction ordering is a strict partial ordering that is well-founded and is closed unter context
i.e., s � s′ implies t[s] � t[s′] for all terms t, and liftable, i.e., s � t implies sδ � tδ for every
term s and t and substitution δ.

4

A (Herbrand) interpretation I is a set of ground Σ-equations—those that are true in
the interpretation. Satisfiability/validity of ground Σ-literals, Σ-clauses, and clause sets
in a Herbrand interpretation is defined as usual. We write I |= F to denote the fact that
I satisfies F , where F is a ground Σ-literal or a Σ-clause (set).

Since every interpretation defines in effect a binary relation on ground Σ-terms, and
every binary relation on such terms defines an interpretation, we will identity the two
notions in the following.

An E-interpretation is an interpretation that is also a congruence relation on the
Σ-terms. If I is an interpretation, we denote by IE the smallest congruence relation on
the Σ-terms that includes I, which is an E-interpretation. We say that I E-satisfies F
iff IE |= F . Instead of IE |= F we generally write I |=E F . We say that F E-entails F ′,
written F |=E F ′, iff every E-interpretation that satisfies F also satisfies F ′. We say that
F and F ′ are E-equivalent iff F |=E F ′ and F ′ |=E F .

Redundant Clauses. Intuitively, a clause is redundant iff it follows from a set of smaller
clauses. We will formalize this now, following [BG98]. There is a related notion of
“redundant inference” which will be introduced in Section 3.1 below.

If D is a ground clause and C is a set of ground clauses then let CD = {C ∈ C | D�
C}. When C is a set of non-ground clauses and when writing CD we identify C with the
set of all ground instances of all its clauses.

Now, a ground clause D is redundant wrt. a set of clauses C iff CD |=E D. That is,
D is redundant wrt. C iff D follows from smaller clauses taken from C .9 When D is a
non-ground clause we say that D is redundant wrt. C iff every ground instance of D is
redundant wrt. C . For instance, using any simplification ordering, the clause P(f (a))←
is redundant wrt. {P(a)← , f (x)' x←}.

3 Inference Rules on Clauses

The following three inference rules are taken from the superposition calculus [BG98]
and adapted to our needs. We need in addition a splitting rule that will be defined after-
wards. All rules will below be embedded into the hyper tableau derivation rules.

When writing an equation l ' r we always mean it as a nondeterministic notation
that also stands for its symmetric version r ' l.

The sup-left rule (superposition left) applies a superposition step to a body literal:

sup-left(σ)
A ← s[l′]' t,B l ' r←

(A ← s[r]' t,B)σ
if


l′ is not a variable,
σ is a mgu of l and l′,
lσ 6� rσ, and
sσ 6� tσ

The last condition can be dropped, and the resulting inference rule is then called ordered
paramodulation left.

9 By compactness, even from a finite set of clauses.

5

The unit-sup-right rule (unit superposition right) applies a superposition step to a
positive unit clause:

unit-sup-right(σ)
s[l′]' t← l ' r←

(s[r]' t←)σ
if



l′ is not a variable,
σ is a mgu of l and l′,
(s' t)σ 6� (l ' r)σ,
lσ 6� rσ, and
sσ 6� tσ

The last condition can be dropped, and the resulting inference rule is then called ordered
unit paramodulation right.

The general superposition right inference rule of [BG98] between non-unit clauses
is not needed, essentially due to the presence of the splitting rule below.

The ref rule (reflexivity) eliminates a body literal on the grounds of being trivially
true (after applying a substitution).

ref(σ)
A ← s' t,B
(A ← B)σ

if σ is a mgu of s and t

Finally, the announced splitting rule. It takes a disjunctive fact, applies a purifying
substitution π to it and returns the instantiated head atoms, one conclusion per head
atom.

split(π)
A1, . . . ,Am←

A1π← ·· · Amπ←
if

{
m≥ 2, and
π is a purifying substitution π for A1, . . . ,Am←

3.1 Redundant Inferences and Saturation

We write C,D⇒sup-left(σ) E to denote a sup-left inference, i.e., an instance of the sup-left
inference rule with left premise C, right premise D, conclusion E and substitution σ

that satisfies the rule’s side condition. We use analogous notation for an application of
the sup-right inference rule, and for an application of ref we write, similarly, C⇒ref(σ)
E. Likewise, C ⇒split(π) A1 ← , . . . ,Am ← denotes a split inference with premise C,
purifying substitution π and conclusions A1← , . . . ,Am← .

An R-inference, with R ∈ {sup-left,unit-sup-right, ref} is ground iff its constituent
clauses C,D and E are ground. The substitution σ in a ground inference is irrelevant
and may be assumed, without loss of generality, to be the empty substitution ε.

If C,D⇒R(σ) E is an R-inference (with D absent in the case of ref) and γ is a sub-
stitution such that Cσγ,Dσγ⇒R(ε) Eγ is a ground inference, then the latter inference is
called a ground instance of the inference C,D⇒R(σ) E.

For instance, by taking γ = {x 7→ a} one sees that the ground inference

(P(f (a))←),(f (a)' a←)⇒sup-right(ε) P(a)←

is a ground instance of the inference

(P(f (x))←),(f (y)' y←)⇒sup-right({y7→x}) P(x)← .

6

In contrast,

(P(f (f (a)))←),(f (a)' a←)⇒sup-right(ε) P(f (a))←

is not a ground instance of the inference above, for no substitution γ. Intuitively, only
such ground inferences can be ground instances of inferences where paramodulation
takes place at positions that exist also at the non-ground level. This excludes ground
inferences that are not liftable because they would require paramodulation into or below
variables. We can define these notions for the split rule analogously: a split inference is
ground if the premise is ground (and hence all its conclusions are ground). Similarly as
above for the other rules, the purifying substitution π can always be assumed to be the
empty substitution then.

If C⇒split(π) A1 ← , . . . ,Am ← is a split inference and γ is a substitution such that
Cπγ⇒split(ε) A1γ← , . . . ,Amγ← is a ground split inference, then the latter inference is
called a ground instance of the former inference.

Let D be a set of clauses, not necessarily ground. A ground inference C,D⇒sup-left(ε)
E or C,D⇒sup-right(ε) E is redundant wrt. D iff E is redundant wrt. DC ∪ {D}. A ground
inference C⇒ref(ε) E is redundant wrt. D iff E is redundant wrt. DC. And a ground in-
ference C⇒split(ε) A1← , . . . ,Am← is redundant wrt. D iff there is an i with 1≤ i≤m
such that Ai← is redundant wrt. DC.

For all inference rules sup-left, unit-sup-right, ref and split, a (possibly non-ground)
inference is redundant wrt. D iff each of its ground instances is redundant wrt. D .

Intuitively a ground inference is redundant wrt. D iff its conclusion follows from a
set of smaller clauses than the left premise, while fixing the right premise. Because all
(ground) inferences work in a strictly order-decreasing way, adding the conclusion of an
inference to the clause set the premises are taken from renders the inference redundant
wrt. that set.10 For instance, adding P(a)← to the set {(P(f (a))←),(f (a)' a←)}
renders the obvious sup-right inference redundant wrt. the resulting set.

It is not only redundant inferences that can be neglected. Also inferences where one
or both parent clauses are redundant can be neglected. This is captured by the following
definition.

Definition 3.1 (Saturation up to redundancy). A clause set C is saturated up to re-
dundancy iff for all clauses C∈C such that C is not redundant wrt. C all of the following
hold:

1. Every inference C⇒split(π) A1← , . . . ,Am← such that Cπ is not redundant wrt. C ,
is redundant wrt. C .

2. Every inference C,D⇒R(σ) E, where R ∈ {sup-left,unit-sup-right} and D is a fresh
variant of a positive unit clause from C , such that neither Cσ nor Dσ is redundant
wrt. C , is redundant wrt. C .

3. Every inference C⇒ref(σ) E such that Cσ is not redundant wrt. C , is redundant wrt.
C .

For instance, the (satisfiable) propositional clause set C = {(A,B←),(← A)} is not
saturated up to redundancy. By an application of the split rule to A,B← one can infer

10 This property makes it obvious that fair derivations, as defined below, exists.

7

A← and B← , and adding, say, A← to C renders the clause A,B← redundant. Notice
that with two more (obvious) inferences the empty clause can then be derived, which
results in a saturated state. This example also shows that neglecting cases, as for B← ,
easily leads to unsoundness.

As an example for a non-ground split inference consider a clause P(x),Q(x)←
from some clause set. One may want to avoid applying all purifying substitutions to
it. Fortunately, Definition 3.1-1 does not prescribe that at all. For instance, when the
clause set includes an equation a ' b← (where a � b) then purifying P(x),Q(x)←
by π = {x/b}, yielding P(b),Q(b)← , and adding P(b)← to the clause set is suffi-
cient to render the split inference with purifying substitution {x/a} redundant, as the
clause P(a)← follows from P(b)← and a ' b← , both of which are smaller than
P(a),Q(a)← .

Theorem 3.2 (Static Completeness). Let C be a clause set saturated up to redun-
dancy. If � /∈ C then C is E-satisfiable.

The proof employs the model-construction technique originally developed for the su-
perposition calculus, but adapted to our needs.11

Notice that Theorem 3.2 applies to a statically given clause set C . The connection to
the dynamic derivation process of the E-hyper tableau calculus will be given later, and
Theorem 3.2 will be essential then in proving the completeness of the E-hyper tableau
calculus.

4 E-Hyper Tableaux

In [BFN96], based on [LMG94], hyper tableau have been introduced as labeled trees
over literals (which are universally quantified, and hence can be seen as unit clauses).
For our purposes, however, a generalization towards trees over clauses is better suited.
This is, because new clauses can now be derived as the derivation proceeds, and these
clauses are context dependant (branch local), and tableau are an obvious data structure
to deal with this context dependency.

A labeled tree over a set M is a pair (t,λ) consisting of a finite, ordered tree t and
a labeling function λ that maps each node of t to some element from M. A (clausal)
tableau over a signature Σ is a labeled tree over the set of Σ-clauses.

We use the letter T to denote tableaux.
Let B be a branch of a tableau T of length n, i.e., a sequence of nodes (N1, . . . ,Nn),

for some n≥ 0, where N1 is the root and Nn is the leaf of B. Each of the clauses λ(Ni),
for i = 1, . . . ,n, is called a (tableau) clause of B.

Occasionally it is convenient to read a branch B as the multiset of its tableau clauses
λ(B) := {D | D is a tableau clause of B}. This allows to write, for instance, C ∈ B in-
stead of C ∈ λ(B). Further, if B is branch of a tableau T we write B ·C and mean the
tableau obtained from T by adding an edge from the leaf of B to a fresh node labeled
with C. Further, we write B ·B′ to denote the branch obtained by concatenating the
branch B and the node sequence B′.
11 Proofs are in the appendix.

8

4.1 Extension Rules

We define two derivation rules for extending branches in a given tableau.
The Split rule branches out on an instance of a positive clause; its conclusions are

labeled as “decision clauses”, as indicated by the annotation d. The rı̈¿ 1
2 e of this labeling

will become clear below in Section 4.2.

Split
B

B ·A1←d · · · B ·Am←d if



there is a clause C ∈ B and
a substitution π such that

C⇒split(π) A1← , . . . ,Am← and
B contains no variant of Ai← ,
for any i = 1, . . . ,m

The clause C is called the selected clause (of a Split inference).
The Equality rule applies an inference rule for equality reasoning from Section 3 to

a body literal.

Equality
B

B ·E
if



there is a clause C ∈ B,
a fresh variant D of a positive unit clause in B, and
a substitution σ such that

C,D⇒R(σ) E with R ∈ {sup-left,unit-sup-right} or
C⇒ref(σ) E, and

B contains no variant of E

In both rules, the test for the conclusion(s) being not contained in B is needed in
interplay with deletion of clauses based on non-proper subsumption (see the Del below).

For later use, we say that an application of a Split, Sup-left, Unit-sup-right or Ref
derivation rule to a branch B is redundant iff its conclusion (at least one of its conclu-
sions, in the case of Split) is redundant wrt. B.

4.2 Deletion and Simplification Rules

From a practical point of view, deletion of redundant clauses and simplification opera-
tions on clauses are crucial. We will introduce these now. Adding such rules is a major
addition to the hyper tableau calculus and involves a more sophisticted technical treat-
ment than that in [BFN96]. This is, because hyper tableau as defined in [BFN96] are
non-destructive, in the sense that extending a branch goes along with increasing the set
of its corresponding labels (unit clauses). This is no longer the case in presence of, for
instance, the Del rule (deletion) below, which removes a clause that is redundant in a
branch or subsumed by another clause in the branch.

Also, to preserve the calculus’ correctness, arbitrary deletion of redundant clauses
is not possible. Only clauses can be deleted the deletion of which is not justified by
clauses introduced at a later decision level. This is formalized next.

Del
B ·C(d) ·B1 ·B2

B · t' t←(d) ·B1 ·B2
if


(1) C is redundant wrt. B ·B1, or some
clause in B ·B1 non-properly subsumes C, and
(2) B1 does not contain a decision clause

9

The notation (d) is meant to say that if there is a label d, it is preserved when replacing
C by t' t← .

Observe that our redundancy notion does not cover non-proper subsumption.12 For
instance, the clause P(a)← is not redundant wrt. {P(x)← } (and neither is the clause
P(y)←). Therefore, deletion of non-properly subsumed clauses has been taken care of
explicitly.

The condition (2) is needed to guarantee the completeness of the calculus. Without
it, a Del step would be possible that is justified at or below some later decision level
(Split application). This would render the calculus incomplete.

The next rule, Simp (simplification), replaces a clause by another one that is smaller
in the ordering:

Simp
B ·C(d) ·B1 ·B2

B ·D(d) ·B1 ·B2
if


B ·C ·B1 |=E D,
C is redundant wrt. B ·D ·B1, and
B1 does not contain a decision clause

The Simp rule covers, for instance, standard rewriting by unit clauses.
Notice that a similar condition as for the Del rule above, that B1 does not contain a

decision clause, is also needed in Simp rule. This time, the condition is even necessary
to obtain a sound calculus.

Lemma 4.1. For each of the derivation rules Split, Equality, Del and Simp, if the premise
of the rule is E-satisfiable, then one of its conclusions is E-satisfiable as well.

A slightly different approach to deletion and simplification is implemented in the
SPASS prover [Wei01]. The delete rule in SPASS is even more general than ours as it
allows to ignore the decision levels. Of course, a deleted clause must be restored on
backtracking to an earlier decision level if the deletion depends on the current decision
level. This is never necessary in our case. Similar argumentation holds for the Simp
rule. At present, it is not clear to us what approach is preferrable in practice. We intend
to clarify this issue by experiments.

4.3 Derivations

We say that a branch of a tableau is closed iff it contains the empty clause �.13 A
branch that is not closed is also called open. A tableau is closed iff each of its branches
is closed, and it is open iff it is not closed (i.e., if it has an open branch).

An (E-hyper tableau) derivation of a set {C1, . . . ,Cn} of Σ-clauses is a possibly
infinite sequence of tableaux D = (Ti)0≤i<κ such that

1. T0 is the clausal tableau over Σ that consists of a single branch of length n with
tableau clauses C1, . . . ,Cn.14, and

12 A clause C non-properly subsumes a clause D iff there is a substitution σ such that Cσ = D.
13 We write � instead of “← ”.
14 The order does not matter, as the collection of tableaux clauses of a branch will be seen as

sets. For technical reasons we assume that no clause Ci is a variant of a clause C j, for all
1≤ i < j ≤ n, but this is obviously not an essential restriction.

10

2. for all i > 0, Ti is obtained from Ti−1 by a single application of one of the deriva-
tion rules in Sections 4.1 and 4.2 to some open branch of Ti−1, called the selected
branch.

Recall that a tableau T is of the form (t,λ), where t is a tree, i.e., a pair (N,E) where
N is the set of the nodes of t and E is the set of the edges of t.

Each derivation D = ((Ni,Ei),λi)i<κ determines a limit tree ((
S

i<κ Ni,
S

i<κ Ei). It
is easy to show that a limit tree of a derivation D is indeed a (possibly infinite) tree.

Now let t be the limit tree of some derivation, let B = (Ni)i<κ be a (possibly infinite)
branch in t with κ nodes, and let Bi = (N1, . . . ,Ni) be the initial segment of B with i
nodes, for all i < κ. Define B∞ =

S
i<κ

T
i≤ j<κ λ j(B j), the set of persistent clauses (of

B).

Definition 4.2 (Exhausted Branch). Let t be a limit tree, and let B = (Ni)i<κ be a
branch in t with κ nodes. The branch B is exhausted iff it does not contain the empty
clause, and for every clause C ∈ B∞ and every fresh variant D of every positive unit
clause in B∞ such that neither C nor D is redundant wrt. B∞ all of the following hold,
for all i < κ such that C ∈ Bi and D is a variant of a clause in Bi:

1. if Split is applicable to Bi with underlying inference C⇒split(π) A1 ← , . . . ,Am ←
and Cπ is not redundant wrt. Bi, then there is a j < κ such that the inference
C⇒split(π) A1← , . . . ,Am← is redundant wrt. B j.

2. if Equality is applicable to Bi with underlying inference C,D⇒R(σ) E, for some
R ∈ {sup-left,unit-sup-right}, and neither Cσ nor Dσ is redundant wrt. Bi, then
there is a j < κ such that the inference C,D⇒R(σ) E is redundant wrt. B j.

3. if Equality is applicable to Bi with underlying inference C ⇒ref(σ) E and Cσ is
not redundant wrt. Bi, then there is a j < κ such that the inference C⇒ref(σ) E is
redundant wrt. B j.

A refutation of a clause set C is a finite derivation of C that ends in a closed tableau.
A derivation is fair iff it is a refutation or its limit tree has an exhausted branch.
In the preceeding definition, actually carrying out a Split inference with a clause C

and (irreducible) purifying substitution π, when applicable, will achieve the conclusion,
i.e. make Cπ redundant wrt. B j. The analogous holds for the Equality inferences in items
2 and 3. This observation indicates that proof procedures implementing fair derivations
indeed can be given.

Theorem 4.3 (Correctness of E-Hyper Tableaux). Let C be a clause set that has a
refutation. Then C is E-unsatisfiable.

For the completeness direction we need the following result:

Proposition 4.4 (Exhausted branches are saturated up to redundancy). If B is an
exhausted branch of a limit tree of some fair derivation then B∞ is saturated up to
redundancy.

Proposition 4.4 and Theorem 3.2 entails our main result:

11

Theorem 4.5 (Completeness of E-Hyper Tableaux). Let C be a clause set and T be
the limit tree of a fair derivation D of C . If D is not a refutation then C is satisfiable.

Because the proof of this theorem refers to the proof of Theorem 3.2, the model con-
structed in the proof of Theorem 3.2 provides a strengthening of Theorem 4.5 by being
more specific.

Corollary 4.6 (Bernays-Schönfinkel Class with Equality). The E-hyper tableau cal-
culus can be used as a decision procedure for the Bernays-Schönfinkel class with equal-
ity, i.e., for sentences with the quantifier prefix ∃∗∀∗.

5 Restricting Split and the Relation to Splitting in SPASS

For performance reasons it is mandatory to restrict the search space induced by having
to apply purifying substitutions in Split rule applications. The fairness criteria in Defini-
tion 4.2 already support that. For instance, one can take advantage of avoiding purifying
substitutions that are reducible, as they lead to redundant inferences.

Definition 5.1 (Reducible substitution). Let C be a clause set and σ a substitution. We
say that σ is reducible wrt. C iff there is a term t ∈Ran(σ)15, a unit clause l ' r← ∈ C
and a (matching) substitution µ such that lµ occurs in t and lµ� rµ.

We say that σ is irreducible wrt. C if σ is not reducible wrt. C .
Obviously, for any (positive) clause C = A1, . . . ,Am ← in a branch B and any pu-

rifying substitution π0 for C there is a maximal chain Cπ0 � Cπ1 � ·· · � Cπn, for
some n ≥ 0, where πi is obtained from πi−1 by one-step rewriting a term of its range
with a positive unit clause from B and such that πn is irreducible wrt. B. It is not dif-
ficult to see that, by equality, applying Split with Cπn renders the Split inferences with
Cπ0, . . . ,Cπn−1 redundant then (wrt. all branches obtained by splitting Cπn). No re-
ducible purifying substitution needs therefore ever be considered in Split inferences to
obtain an exhausted branch.

An example of such a situation is C = P(x),Q(x)← , a ' b← ∈ B, a � b, π0 =
{x/a} and π1 = {x/b}. Split with P(b),Q(b)← alone to extend B is sufficient.

A significantly different split rule is implemented in the SPASS prover [Wei01].
It does not apply a purifying substitution to force partitioning a clause into variable
disjoint parts. Instead, it can split on clauses only that are already partitioned that way.

We do not claim that our approach is always preferrable in practice. Yet, there are
situations where indeed it is. By way of example, consider the following clauses

f (a)' a← (1)
g(a)' a← (2)

f (g(x))' g(f (x))← (3)
p(f (x)), p(g(x))← (4)

Suppose a precedence f � g� a (or g� f � a, as the problem is symmetric in f and
g), lifted to any simplification ordering. All superposition inferences among the clauses

15 As usual, the range of a substitution σ is Ran(σ) = {xσ | xσ 6= x}.

12

1-3 are redundant, and a prover like SPASS will detect that. Among others, there is a
superposition inference between clause 4 and 3, which yields the clause

p(g(f (x))), p(g(g(x)))← . (5)

In fact this inference is redundant, too. To see this, consider any ground substitution γ.
It must map x to some term comprised of a combination of f s, gs and (one) a, e.g. γ =
{x/ f (f (g(f (a))))}. Now, any ground instance obtained from clause 5 in this way can
be reduced by the unit clauses 1-3 in one or more steps to the clause p(f (a)), p(g(a))←
(they can be reduced even further), which is a ground instance of clause 4 and which
is smaller in the ordering than the ground instance of clause 5 we started with. By this
argument the superposition inference leading to clause 5 is redundant (and need not be
carried out).

Notice that this argumentation takes the clause sets signature into account. How-
ever, the commonly implemented redundancy criteria don’t do that. In particular, for
instance, SPASS does not find a finite saturation of the clause set above. In contrast,
E-hyper tableau are aware of the input signature and the redundancy criteria based on
irreducible purifying substitution, as mentioned above, are strong enough to achieve
termination.16 To see this, it is enough to observe that any purifying substitution, like
π = {x/ f (f (g(f (a))))}, is reducible (to π = {x/a}) wrt. any branch containing clauses
1 and 2. Thus, the only instance of clause 4 to be considered for splitting (in presence of
1-3) is p(f (a)), p(g(a))← (which can be simplified further). Moreover, this can easily
be achieved by adding the following “logic program”

ran(a)← (6) ran(f (x))← ran(x) (7) ran(g(x))← ran(x) (8)

which, in combination with rewriting by unit clauses will enumerate in its ran pred-
icate the ground terms of the input signature that are irreducible wrt. the orientable
current positive unit clauses, i.e. the terms that are considered as the range of purifying
substitutions. In presence of clauses 1 and 2 this is the singleton {a}. The general form
of the “logic program” has, of course, already been used within SATCHMO [MB88]
and some descendants. To our knowledge, though, it was never observed before that
equational reasoning can help to confine the ran-predicate.

6 Implementation

We have implemented the E-hyper tableau calculus by extending our existing KRHyper
system. KRHyper is a hyper tableaux theorem prover, and as such it lacked equality
handling in the original version. The modified system, called E-KRHyper, adapts the
methods of its precursor to accommodate the new inferences, while at the same time
retaining the original functionality regarding input clause sets without equality.

The derivation proceeds in a bottom up manner. Internally, clauses are divided into
three sets, one containing the positive non-equational units (facts), the other consist-
ing of the positive non-unit clauses (disjunctions), and the third including both the unit

16 More precisely, there is a finite derivation in the E-hyper tableau calculus, and any reasonable
implementation, like our E-KRHyper system, will find it.

13

equations and the clauses with negative literals (rules). The hyper extension inference
of KRHyper is equivalent to a series of Sup-left, Ref and Split applications, and there-
fore it is kept in place in E-KRHyper as a shortcut inference for the resolution of non-
equational atoms. The E-hyper tableau is generated depth first, with the current state
of the three clause sets always representing a single branch. The Split on a disjunction
is only executed when the other inference possibilities have been exhausted. An itera-
tive deepening strategy with a limit on the maximum term weight of generated clauses
ensures the refutational completeness.

Clauses are derived by a loop iterating over the rules, with each rule in turn access-
ing indexes in the search for inference partners. The inferred clauses are added to their
respective sets after having passed the weight and subsumption tests. The dynamic na-
ture of the rule set represents a major change compared to the previous system version.
As the hyper tableaux calculus has no inferences that generate new rule clauses, this set
remained fixed throughout the derivation of KRHyper, and many optimizations on the
input could be delegated to preprocessing. Operations like the clause subsumption test
are necessary for the new calculus, and they are now employed to optimize the input
clauses as well.

The superposition inferences utilize a discrimination-tree based index over the sub-
terms of clauses, and terms are ordered according to the recursive path ordering (RPO).
As an option, the backtracking mechanism allows the removal of redundant clauses
from the entire current branch, beyond the limits set in Section 4.2.

Category NNE HEQ NEQ UEQ
Attempted 20 20 70 100

Solved 6 9 13 2
Av. time 0.01s 0.88s 2.56s 1.93s

We have tested E-KRHyper with several
problem sets used in the last CASC system com-
petition, in 2006, at a timeout of 400 seconds;
some results are given in the table on the right.
The column NNE (non-Horn without equality)
can be used to compare E-KRHyper with KRHyper (not shown in the table): which
also solved 6 out of the 20 problems, but with a better performance (E-KRHyper is in
average 28 percent slower on these examples). In the category HEQ (Horn with equal-
ity) E-KRHyper compares with the competitions participants in the intermediate ranks,
which we would consider satisfactory for a newcomer. For those problems there is no
need for enumerating ground terms for splitted variables; this is the case for the NEQ
(non-Horn with equality) examples, where the performance compares to the slower par-
ticipants of the competition. Also for UEQ (units with equality) E-KRHyper is not yet
really competitive. We consider this version of E-KRHyper as a first step towards an
efficiently applicable tableau prover with equality. More details about the system can
be found in [PW07]; it is available under the GNU Public License from the E-KRHyper
website at http://www.uni-koblenz.de/˜bpelzer/ekrhyper.

7 Conclusion

We have presented a tableau calculus with equality, by integrating superposition based
inference rules into the hyper tableau calculus rules. Our main result is its correctness
and completeness, the latter in combination with redundancy criteria. The calculus is
implemented in the E-KRHyper system, an extension of our existing KRHyper prover.

14

References

[Bec97] B. Beckert. Semantic Tableaux With Equality. Journal of Logic and Computation,
7(1):39–58, 1997.

[BF03] P. Baumgartner and U. Furbach. Automated Deduction Techniques for the Manage-
ment of Personalized Documents. Annals of Mathematics and Artificial Intelligence
– Special Issue on Mathematical Knowledge Management, 38(1), 2003.

[BFGHS04] P. Baumgartner, U. Furbach, M. Gross-Hardt, and A. Sinner. Living Book – De-
duction, Slicing, and Interaction. Journal of Automated Reasoning, 32(3), 2004.

[BFN96] P. Baumgartner, U. Furbach, and I. Niemelä. Hyper Tableaux. In Proc. JELIA 96,
LNAI 1126, Springer, 1996.

[BG98] L. Bachmair and H. Ganzinger. Chapter 11: Equational Reasoning in Saturation-
Based Theorem Proving. In W. Bibel and P. H. Schmitt, eds., Automated Deduction.
A Basis for Applications, Volume I, Kluwer, 1998.

[BS06] P. Baumgartner and R. Schmidt. Blocking and Other Enhancements for Bottom-up
Model Generation Methods. In U. Furbach and N. Shankar, eds., Proc. IJCAR, LNAI
4130, Springer, 2006.

[BT05] P. Baumgartner and C. Tinelli. The Model Evolution Calculus with Equality. In R.
Nieuwenhuis, ed., Proc. CADE-20, LNAI 3632, Springer, 2005.

[DV96] A. Degtyarev and A. Voronkov. Equality Elimination for the Tableau Method. In
Proc. DISCO-96, LNAI 1128, Springer, 1996.

[DV98] A. Degtyarev and A. Voronkov. What you Always Wanted to Know About Rigid
E-Unification. Journal of Automated Reasoning, 20(1):47–80, 1998.

[FO06] U. Furbach and C. Obermaier. Applications of Automated Reasoning. In Proc. of
the 29th German Conference on AI. LNAI 4314, Springer 2007.

[Gie01] M. Giese. Incremental Closure of Free Variable Tableaux. In R. Goré, A. Leitsch,
and T. Nipkow, eds., Proc. IJCAR 2001, LNAI 2083, Springer, 2001.

[Gie02] M. Giese. A Model Generation Style Completeness Proof For Constraint Tableaux
With Superposition. In U. Egly and C. G. Fermüller, eds., Proc. TABLEAUX 2002,
LNCS 2381, Springer, 2002.

[Gie03] M. Giese. Simplification Rules for Constrained Formula Tableaux. In M. C. Mayer
and F. Pirri, eds., Proc. TABLEAUX 2003, LNCS, Springer, 2003.

[LMG94] R. Letz, K. Mayr, and C. Goller. Controlled Integrations of the Cut Rule into Con-
nection Tableau Calculi. Journal of Automated Reasoning, 13, 1994.

[LS02] R. Letz and G. Stenz. Integration of Equality Reasoning into the Disconnection
Calculus. In U. Egly and C. G. Fermüller, eds., Proc. TABLEAUX, LNAI 2381,
Springer, 2002.

[MB88] R. Manthey and F. Bry. SATCHMO: a Theorem Prover Implemented in Prolog. In
E. Lusk and R. Overbeek, eds., Proc. CADE-9, LNCS 310, Springer, 1988.

[NR01] R. Nieuwenhuis and A. Rubio. Paramodulation-based Theorem Proving. In J. A.
Robinson and A. Voronkov, eds., Handbook of Automated Reasoning. Elsevier and
MIT Press, 2001.

[PW07] B. Pelzer and C. Wernhard. System Description: E-KRHyper Fachberichte Infor-
matik 13-2007, Universität Koblenz-Landau, 2007.

[SS06] Geoff Sutcliffe and Christian Suttner. The State of CASC. AI Communications,
19(1):35–48, 2006.

[Wei01] C. Weidenbach. Combining Superposition, Sorts and Splitting. In A. Robinson and
A. Voronkov, eds., Handbook of Automated Reasoning. North Holland, 2001.

15

A Proofs

The general technique to prove the E-hyper tableau calculus complete is taken from
the completeness proof of the superposition calculus [BG98,NR01] but adapted to our
needs. One of the key concepts concerns the construction of a model of a clause set
under certain conditions. That model constructed is presented as a (convergent) rewrite
system. We will describe these concepts next.

A.1 Orderings and Rewrite Rules

Our approach makes heavy use of term rewrite systems and term orderings. We only
mention here some details specific to our framework and refer to the literature [BG98,NR01,
e.g.] for standard definitions otherwise.

We suppose as given a reduction ordering � that is total on ground Σ-terms.17 The
non-strict ordering induced by � is denoted by �, and ≺ and � denote the converse of
� and �, respectively.

A (rewrite) rule is an expression of the form l → r where l and r are Σ-terms. A
rewrite system is a (possibly infinite) set of rewrite rules. A ground rewrite system R is
ordered by� iff l � r, for every rule l→ r ∈ R, and R is lhs-irreducible if it contains no
two different rules of the forms l→ r and s[l]→ t. In other words, no left hand side of
a rule can be rewritten by another rule.

Notice that any ground rewrite system ordered by � and without lhs-overlaps is a
convergent ground rewrite system.18 It is well known that for any convergent rewrite
system R, and any two terms s and t, R |=E s ' t if and only if there is a (exactly one)
term u such that s→?

R u and t →?
R u. This result thus applies in particular to ground

lhs-irreducible convergent rewrite systems.
In the sequel, the letter R will always denote a ground lhs-irreducible rewrite system.
By a slight abuse of notation we will write R |= F for a ground rewrite system R

and clause (set) F iff the interpretation {l ' r | l → r ∈ R} satisfies F . (Similarly for
R |=E F .)

A.2 Model Construction

This section is presenting the proof of Theorem 3.2 (Static Completeness). Let C be
a (possibly infinite) set of clauses. (In the completeness proof C will be obtained as
a certain limit branch of a tableau.) We show how C induces a ground lhs-irreducible
rewrite system RC .

First, for a positive ground Σ-clause C we define by induction on the term ordering
� sets of rewrite rules εC and RC as follows (we leave the parameter C implicit). Assume

17 A reduction ordering is a strict partial ordering that is well-founded and is closed unter context
i.e., s � s′ implies t[s] � t[s′] for all terms t, and liftable, i.e., s � t implies sδ � tδ for every
term s and t and substitution δ.

18 A convergent rewrite system is one that is confluent and terminating.

16

that εD has already been defined for all ground Σ-clauses D with C � D. Where RC =S
C�D εD, define

εC =


{l→ r} if C = l ' r← is a ground instance of some positive

unit clause in C , l � r, and l is irreducible wrt. RC

/0 otherwise

Then, RC =
S

C εC where C ranges over all ground Σ-clauses.
By construction, RC has no critical pairs thus is an lhs-irreducible rewrite system.

Since � is a well-founded ordering, RC is a convergent rewrite system by construction.
The given clause set C comes into play as stated only in the first condition of the defi-
nition of εC. An important detail is that according to our convention the equations s' t
and t ' s are treated as the same. Thus, if s ≺ t then s ' t ← may still be turned into
the rewrite rule t→ s in RC by means of its symmetric version t ' s← .

Observe that even if C is a set of positive unit clauses, then RC , even if convergent,
maybe incomplete wrt. the equational theory presented by it. For instance, with C =
{(a' b←),(a' c←)} and the ordering a� b� c the induced rewrite system RC =
{a→ c} is clearly incomplete wrt. the equational theory {a' b,a' c}. In general then
it might be necessary to add enough positive unit clauses to C to make RC complete.
The E-hyper tableau calculus does that, but not for the positive non-unit clauses, which
are handled differently, by splitting.

The following lemma states that satisfaction of a clause C in RC is preserved as RC
is being extended.

Lemma A.1. Let C be a clause set, C a ground clause, and R and R′ rewrite systems
such that RC ⊆ R⊆ R′ ⊆ RC . If R |=E C then R′ |=E C.

Proof. Writing C as the clause A← B , we suppose R |=E A← B and show R′ |=E A←
B .

If R |=E B (reading B as a conjunction of atoms) then with R |=E A ← B it follows
R |=E A, for some head atom A of A ← B . From monotonicity of first-order logic with
equality, and with R′ ⊇ R it follows R′ |=E A and, trivially, R′ |=E A←B . Hence assume
R 6|=E B from now on.

By way of contradiction assume R′ |=E B but R′ 6|=E A, for any head atom A (of
A← B). That R′ |=E B holds but R |=E B does not hold means there is at least on body
equation s' t in B such that R′ |=E s' t but R 6|=E s' t. Because RC is convergent (this
follows easily from its construction) and hence also its subsets R and R′ are convergent,
conclude that s' t is joinable by R′ but not by R.

Every rule l→ r ∈ RC is obtained from a ground instance l ' r← of a positive unit
clause from the clause set C . From l→ r ∈ (R′\R) and R⊇RC it follows l→ r /∈RC. By
definitition of RC then (l ' r←)�C. (In fact even (l ' r←)�C because these two
clauses are different.) This entails that the head atom l ' r (of the unit clause l ' r←)
is greater or equal than the body atom s ' t, i.e. {l,r} � {s,s, t, t}. It follows that l is
greater than even the maximum of s and t. But then it is impossible (essentially, by
the subterm property of reduction orderings) that the rule l→ r can be used to rewrite
the term s or the term t. Because this holds for every rule in (R′ \R), the R′- and R-
normalforms of s and t are the same. This leads to a contradiction to the conclusion that

17

R′ |=E s ' t holds but R |=E s ' t does not hold. Hence, the assumption that R′ |=E B
holds but RC |=E A does not hold must be given up. This entails R′ 6|=E B or R′ |=E A,
for some head atom A. Equivalently, R′ |=E A ← B . ut

Occasionally the following lemma comes handy.

Lemma A.2. Let C be a clause set and C and D ground clauses. If C � D then RD ∪
εD ⊆ RC

Proof. By definition RC =
S

C�E εE and RD =
S

D�E εE . With C�D it follows εD ⊆ RC
and RD ⊆ RC. Together, thus, RD ∪ εD ⊆ RC. ut

Proposition A.3 (Model construction). Let C be a clause set that is saturated up to
redundancy and such that � /∈ C . Then, for every ground instance C of every clause
from C the following holds:

1. If CC |=E C then εC = /0 and RC |=E C.
2. If CC 6|=E C then RC ∪ εC |=E C.

That is, either C is redundant wrt. C and RC already satisfies C, or else, when C is not
redundant wrt. C , extension of RC by εC will satisfy C. However, the case εC = /0 is
possible. For example, when C = ← a' b and CC = /0.

But, in any case the proposition gives RC ∪ εC |=E C.

Proof. The claim is proved by well-founded induction on the ground instances of the
clauses from C . Hence chose any ground instance C of a clause from C arbitrarily and
assume the proposition holds for all ground instances D of all clause from C such that
C � D.

1. CC |=E C.
Regarding item 1, assume CC |=E C, i.e. C is redundant wrt. C . By induction, combin-
ing cases 1 and 2, we get RD ∪ εD |=E D, for every clause D ∈ CC. With Lemma A.2
conclude RD ∪ εD ⊆ RC, and with Lemma A.1 it follows RC |=E D, for every clause
D ∈ CC. Equivalently, RC |=E CC. With CC |=E C conclude RC |=E C, as desired. This
completes the proof of the first part of item 1.

To show εC = /0 assume, by contradiction, εC = {l→ r}, where C = l ' r← . Recall
we have just shown RC |=E CC. As for any convergent rewrite system, two (ground)
terms are equal in the E-interpretation induced by RC iff their normal forms wrt. RC
are the same. Applied to the situation here, this means that l and r have the same RC-
normal form. In particular, thus, some rule from RC must be applicable to the larger
term (wrt.�) of l and r, which is l. But then, by definition we have εC = /0 then. A plain
contradiction. This completes the proof of the first item.

2. CC 6|=E C.
Turning to item 2, suppose from now on CC 6|=E C, i.e., C is not redundant wrt. C . It
follows that no clause D ∈ C that C is a ground instance of can be redundant wrt. C
either. We use this fact below to enable using items 1-3 of Definition 3.1.

We distinguish various cases on the form of C, most of them leading to a contradic-
tion, though, thus ruling out that these forms are possible (in fact, when C is of any of

18

these forms it will be redundant wrt. C). For the (two) non-contradictory subcases we
will show RC ∪ εC |=E C.

2-1. C = (D[x])γ and xγ is reducible wrt. RC.
Suppose C = Dγ, for some clause D ∈ C and some (grounding) substitution γ, that D
contains a variable x, i.e., D = D[x], and xγ is reducible wrt. RC. That is, xγ = xγ[l] for
some rule l→ r ∈ RC.

Let γ′ be the substitution that is the same as γ, except for x, where we set xγ′ = xγ[r].
That is, γ′ is like γ but with the rewrite rule l→ r applied to xγ. From l � r it follows
Dγ′ ≺ Dγ. By the induction hypothesis RDγ′ ∪ εDγ′ |=E Dγ′. From Dγ′ ≺ Dγ conclude
RDγ′ ∪ εDγ′ ⊆ RDγ. Together with Lemma A.1 it follows RDγ |=E Dγ′. Because of l →
r ∈ RC, Dγ = C and by definition of γ′ conclude with congruence RC |=E C, a plain
contradiction to CC 6|=E C as assumed above.

2-2. C = (A ← s' t,B)γ and sγ = tγ.
If C = (A← s' t,B)γ, for some clause (A← s' t,B)∈ C and grounding substitution
γ, and sγ = tγ then there is an inference (A ← s ' t,B)⇒ref(σ) (A ← B)σ, where σ is
a mgu of s and t (and there is a substitution δ such that γ = σδ).

Neither the clause A ← s ' t,B nor the clause (A ← s ' t,B)σ is redundant wrt.
C . This follows trivially from the assumption of case 2, that their instance C is not
redundant wrt. C . By saturation (Definition 3.1-3) the inference (A ← s' t,B)⇒ref(σ)
(A ← B)σ is redundant wrt. C . In particular, thus, its ground instance C⇒ref(ε) (A ←
B)γ is redundant wrt. C . By definition of redundancy, CC |=E (A ← B)γ. It follows
trivially CC |=E C, a plain contradiction to CC 6|=E C as assumed above.

2-3. C = (A ← s' t,B)γ, sγ� tγ and sγ is irreducible wrt. RC.
Assume C = (A ← s' t,B)γ for some clause (A ← s' t,B) ∈ C and grounding sub-
stitution γ. We may assume sγ 6= tγ because otherwise case 2-2 applies. Without loss
of generality let sγ be the larger side of the equation (s ' t)γ, i.e. sγ � tγ. Assume fur-
ther sγ is irreducible wrt. RC. This entails that sγ and tγ are not joinable wrt. RC. Thus,
RC 6|=E sγ' tγ, which trivially entails RC |=E C. Finally, as C is not a positive unit clause
we have trivially εC = /0, which concludes this case.

2-4. C = (s' t←)γ, sγ� tγ and sγ is irreducible wrt. RC.
Assume C = (s ' t ←)γ for some positive unit clause (s ' t ←) ∈ C and grounding
substitution γ. We may assume sγ 6= tγ because otherwise the claim follows trivially.
Without loss of generality let sγ be the larger side of the equation (s ' t)γ, i.e. sγ � tγ.
Assume further sγ is irreducible wrt. RC. Thus, εC = {sγ→ tγ}, which trivially entails
RC ∪ εC |=E C.

2-5. C = (A1, . . . ,Am←)γ, for some m≥ 2.
Assume C = Dγ for some positive non-unit clause D = (A1, . . . ,Am ←) ∈ C , where
m ≥ 2, and grounding substitution γ. It is not difficult to see that γ can be obtained by
composition of some purifying substitution π for D and some other substitution δ, i.e.
γ = πδ. Such a substitution π always exists, it could be γ itself.

Neither D nor Dπ is redundant wrt. C . This follows trivially from the assumption
of case 2, that their instance C = Dγ = Dπδ is not redundant wrt. C . By saturation
(Definition 3.1-1) the inference D⇒split(π) A1π← , . . . ,Amπ← is redundant wrt. C .

19

In particular, thus, its ground instance C⇒split(ε) A1γ← , . . . ,Amγ← is redundant wrt.
C . By definition of redundancy, CC |=E Aiγ← , for some i with 1 ≤ i ≤ m. It follows
trivially CC |=E C, a plain contradiction to CC 6|=E C as assumed above.

2-6. C = (D[s])γ and sγ is reducible at a non-variable position.
To make the case analysis exhaustive assume that C does not fall into one of the cases
2-1 – 2.5. We analyze further the form C can take. Assume C = Dγ for some clause
D ∈ C and grounding substitution γ

In the first case D has a non-empty body. Because the cases 2-2 and 2-3 are ex-
cluded, D can be written as A ← s' t,B , where sγ� tγ and sγ is reducible wrt. RC.

In the second case D has an empty body. Because the cases 2-4 and 2-5 are excluded,
and we are given that C does not contain the empty clause, D must be a positive unit
clause and can be written as s' t← , where sγ� tγ and sγ is reducible wrt. RC.

Doing both cases together, consider any rule l → r ∈ RC that rewrites sγ. Because
case 2-1 is excluded, l→ r does not rewrite sγ at or below a variable position of s. That
is, any position p such that sγ[l]p holds is a non-variable position of s.

We continue the proof doing both cases together.
By construction the rewrite rule l→ r is obtained from a ground instance of some

positive unit equation from C . Let E = l′ ' r′← be a fresh variant of that positive unit
equation. Because it is fresh, we may assume γ has been extended so as to give l′γ = l
and r′γ = r.

We must have C � Eγ(= (l′ ' r′ ←)γ) because otherwise l′γ → r′γ ∈ RC (i.e.,
l → r ∈ RC) would be impossible. Therefore we can apply induction to Eγ. If case 1
applies, i.e. CEγ |=E Eγ then εEγ = /0 and so l′γ→ r′γ(= l→ r) could not be a rewrite
rule in RC and thus neither in RC. Case 1 is thus impossible. Therefore we must have
CEγ 6|=E Eγ. In other words, Eγ is not redundant wrt. C .

As said above, D can take two different forms. If D is of the form A ← s ' t,B
consider the ground sup-left inference

(Aγ← sγ[l′γ]p ' tγ,Bγ),Eγ⇒sup-left(ε) (Aγ← sγ[r′γ]p ' tγ,Bγ) . (1)

Because p is a position of a non-variable term in s, say, l′′, the sup-left inference

(A ← s[l′′]p ' t,B),E⇒sup-left(σ) (A ← s[r′]p ' t,B)σ (2)

exists, where σ is a mgu of l′ and l′′, and γ = σδ for some substitution δ. The ground
sup-left inference (1) then is a ground instance of the sup-left inference (2).
(*) Above we concluded that Eγ is not redundant wrt. C . Therefore the more general
clause Eσ cannot be redundant wrt. C either. A global assumption in case 2 is that D
is not redundant wrt. C . By saturation (Definition 3.1-2) the inference (2) is redundant
wrt. C . In particular, thus, its ground instance (1) is redundant wrt. C . For economy of
notation let F = Aγ← sγ[r′γ]p ' tγ,Bγ be the conclusion of the inference (1).

By definition of redundancy CC ∪ {Eγ} |=E F . By induction, combining cases 1
and 2, we get RG ∪ εG |=E G, for every clause G ∈ CC. With Lemma A.2 conclude
RG ∪ εG ⊆ RC, and with Lemma A.1 it follows RC |=E G, for every clause G ∈ CC.
Equivalently, RC |=E CC.

Because Eγ = (l′ ' r′)γ is present as a rewrite rule (l′γ→ r′γ) = (l→ r)∈ RC it fol-
lows trivially RC |=E Eγ. Together with RC |=E CC and CC ∪ {Eγ} |=E F (by redundancy

20

of the inference, as mentioned above) conclude RC |=E F . From l → r ∈ RC conclude
by congruence RC |=E C, which is a plain contradiction to CC 6|=E C as assumed to hold
for case 2. This case is thus impossible.

Similarly, if D is of the form s' t← consider the ground unit-sup-right inference

(sγ[l′γ]p ' tγ←),Eγ⇒unit-sup-right(ε) (sγ[r′γ]p ' tγ←) . (3)

Because p is a position of a non-variable term in s, say, l′′, the unit-sup-right infer-
ence

(s[l′′]p ' t←),E⇒unit-sup-right(σ) (s[r′]p ' t←)σ (4)

exists, where σ is a mgu of l′ and l′′, and γ = σδ for some substitution δ. The ground
unit-sup-right inference (3) then is a ground instance of the unit-sup-right inference (4).

The rest of the proof of this case is the same as from (*) above and is omitted
(obviously, F = (sγ[r′γ]p ' tγ←) this time).

In conclusion, the case 2-6 is impossible, too. ut

Theorem 3.2 (Static Completeness). Let C be a clause set saturated up to redun-
dancy. If � /∈ C then C is E-satisfiable.

Proof. Suppose � /∈ C . To show that C is E-satisfiable it suffices we show that RC is an
E-model of C . For this, it suffices to show RC |=E Cγ for an arbitrarily chosen clause
C ∈ C and anarbitrarily chosen grounding substitution γ for C. To prove RC |=E Cγ, we
first use Proposition A.3 and conclude RCγ ∪ εCγ |=E Cγ. From that, RC |=E Cγ follows
immediately by Lemma A.1. ut

A.3 Correctness

Lemma A.5. For each of the derivation rules Split, Equality, Del and Simp, if the
premise of the rule is E-satisfiable, then one of its conclusions is E-satisfiable as well.

Proof. Let us first focus on the inference rules sup-left and unit-sup-right. Assume the
premises of such a rule is E-satisfiable and let I be a E-model; from the axioms of
congruence we can immediately conclude for both rules, that I is an E-model for the
conclusion as well. For ref the claim follows directly from reflexivity.

For Equality the claim is an immediate consequence from the above. For Split as-
sume that there is an E-model I for the premise B. Let A1, · · · ,Am ← be the selected
clause from B. Then I is an E-model for (A1, · · · ,Am ←)π where π is the purifying
subsitution for A1, . . . ,Am. A1π, . . . ,Amπ have no variables in common and all vari-
ables are implicitly universally quantified; hence ∀(A1π∨ . . .∨Amπ) is equivalent to
∀A1π∨ . . .∨∀Amπ and we conclude that I is an E-model for ∀A1π∨ . . .∨∀Amπ.

Hence there is an E-model for one of B ·A1π←d , . . . ,B ·Amπ←d .
For Del the claim holds obviously and for Simp assume an E-model I for the premise.

Let C,D,B and B1 as in the definition of Simp; from (B ·C ·B1) |=E D, we conclude that
D also holds in I. ut

Theorem A.6 (Correctness of E-Hyper Tableaux). Let C be a clause set that has a
refutation. Then C is E-unsatisfiable.

21

Proof. Let T be the resulting closed tree of the refutation. From the contrapositive of
Lemma A.5 we conclude that if a tree Ti of a derivation contains only E-unsatisfiable
branches, this holds for its predecessor Ti−1 as well. The final tableau T of the refutation
clearly consists only of E-unsatisfiable branches and hence by induction of the length
of the refutation (which is by definition a finite derivation), we can conclude that the
initial tableau T0, which consists of one branch with the tableau clauses from C, is E-
unsatisfiable. ut

A.4 Completeness

Lemma A.7. Let C1 and C2 be ground clauses and C a set of ground clauses. If (B j)C1 ∪
C |=E C2 for some j < κ then (B∞)C1 ∪ C |=E C2.

Proof. The proof is by well-founded induction. Suppose the result to hold for all ground
constrained clauses C′1 and C′2 such that C′1 ≺C1.19

Suppose (B j)C1 ∪ C |=E C2 holds for some j < κ. If (B j)C1 ⊆ (B∞)C1 then the result
follows from the monotonicity of first-order logic with equality. Otherwise let (B j)C1

itself denote a finite subset of (B j)C1 such that the entailment in the premise of the
lemma statement holds. Such a finite set exists by compactness of first-order logic with
equality.

Let B′ := (B j)C1 \ (B∞)C1 be those clauses from (B j)C1 that are not an instance of
any persisting clause in B∞. Chose any clause C′ ∈ B′ arbitrary. By construction, it is a
ground instance of some clause C ∈ B j such that C /∈ B∞. This means that C has been
removed from the clause set Bk labeling the node Nk of the branch B, for some k < κ. In
other words, the Del or Simp derivation rule has been applied to Bk with selected clause
C. We treat the application of both derivation rules in one, but distinguish two subcases.

In the first subcase C has been removed by non-proper subsumption from Bk. Let
D ∈ Bk be the clause non-properly subsuming C. As an easy inductive consequence of
the definition of the Split and Equality derivation rules, no constrained clause set derived
can contain a constrained clause and a variant of it. Hence, D cannot be a variant of C
and C must be a proper instance of D. Because the ordering based on the converse
relation, proper generalization, is well-founded, by induction there is a clause D′ in B∞

that non-properly subsumes C (it could be D). Now, with C′ being an instance of C,
C′ is an instance of D′ as well. With D′ ∈ B∞, C′ thus is an instance of a persisting
clause in B∞. With this contradiction to the construction of B′ conclude this subcase is
impossible.

Hence, as the second subcase, by definition of the Del and Simp derivation rules,
the clause C, and hence its instance C′ is redundant wrt. a specific subset B′′ ⊆ Bk+1
That subset B′′ is specified in the definition of the Del and Simp derivation rules. For
our purpose the only important fact is that with B′′ ⊆ Bk+1 it follows (trivially) that C′

is redundant wrt. Bk+1 as well.
That C′ is redundant wrt. Bk+1 means by definition of redundancy (Bk+1)C′ |=E C′.

This implies by monotonicity of first-order logic with equality (Bk+1)C′ ∪ C |=E C′

19 Thus, formally, this is induction on the lexicographic extension of the ordering ≺ on pairs,
which compares (C′1,C

′
2)≺ (C1,C2).

22

With C′ ∈ B′ ⊆ (B j)C1 it follows C′ ≺C1. By the induction hypothesis then

(B∞)C′ ∪ C |=E C′ . (5)

From C′ ≺C1 it follows easily (B∞)C′ ⊆ (B∞)C1 . Together with (5) and by monotonicity
of first-order logic with equality it follows

(B∞)C1 ∪ C |=E C′ . (6)

Because of this entailment, the constrained clause C′ can be removed from the premise
(B j)C1 in the given entailment at the cost of adding the stronger set (B∞)C1 ∪ C . More
formally, from (B j)C1 ∪ C |=E C2 and (6) it follows

((B∞)C1 ∪ C) ∪ ((B j)C1 \{C
′}) ∪ C |=E C2 . (7)

Repeating this procedure for each of the (finitely many) members of B′ allows to con-
clude

((B∞)C1 ∪ C) ∪ ((B j)C1 \B′) ∪ C |=E C2 . (8)

Recall that B′ = (B j)C1 \ (B∞)C1 , which implies by elementary set theory (B j)C1 \B′ ⊆
(B∞)C1 . But then, (B∞)C1 ∪ C |=E C2 follows from (8) immediately. ut

Lemma A.8. If C is redundant wrt. B j, for some j < κ then C is redundant wrt. B∞.

Proof. Suppose C is redundant wrt. B j, for some j < κ. Let D be an arbitrarily chosen
ground instance of C. By definition, D is redundant wrt. B j, which means (B j)D |=E
D. With Lemma A.7 it follows (B∞)D |=E D. In other words D is redundant wrt. B∞.
Because D was chosen as an arbitrary ground instance of C, C is redundant wrt. B∞. ut

Lemma A.9. If R |=E C and C is redundant wrt. C then R |=E C.

Proof. Suppose R |=E C and C is redundant wrt. C . Let D be an arbitrarily chosen ground
instance of C. It suffices to show R |=E D. Since C is redundant wrt. C , by definition, its
ground instance D is redundant wrt. C . Equivalently, CD |=R D, which entails R |=E D
provided R |=E CD holds. The latter however follows immediately from R |=E C and
the trivial fact that CD is a subset of the set of all ground instances of all clauses from
C . ut

Lemma A.10. Let C be a clause and D a positive unit clause. Then, any inference
C,D⇒R(σ) E, where R ∈ {sup-left,unit-sup-right}, or C⇒ref(σ) E that is redundant wrt.
B j, for some j < κ, is redundant wrt. B∞.

Proof. Suppose an inference C,D⇒R(σ) E, where R ∈ {sup-left,unit-sup-right}, redun-
dant wrt. B j, for some j < κ. Let γ be an arbitrary ground substitution for C and D such
that γ = σδ for some substitution δ and such that Cγ⇒R(ε) Eδ is a ground instance of
C,D⇒R(σ) E. Because chosen arbitrarily, it suffices to show that this ground instance
Cγ⇒R(ε) Eδ is redundant wrt. B∞.

23

Because the inference C,D⇒R(σ) E is redundant wrt. B j its instance Cγ⇒R(ε) Eδ

is redundant wrt. B j. By definition of redundancy this means

(B j)Cγ ∪ {Dγ} |=E Eδ . (9)

By Lemma A.7 then
(B∞)Cγ ∪ {Dγ} |=E Eδ , (10)

which, by definition, means that the inference Cγ⇒R(ε) Eδ is redundant wrt. B∞, which
was to be shown.

The proof of the case of an inference C⇒ref(σ) E is similar and is omitted. ut

Lemma A.11. Let C be a positive clause and π a purifying substitution for C. If the
inference C⇒split(π) A1← , . . . ,Am← is redundant wrt. B j, for some j < κ, then it is
redundant wrt. B∞.

Proof. Suppose an inference C ⇒split(π) A1 ← , . . . ,Am ← that is redundant wrt. B j,
for some j < κ. Let γ be an arbitrary ground substitution for C such that γ = πδ for
some substitution δ and such that Cγ⇒split(ε) A1δ← , . . . ,Amδ← is a ground instance
of C⇒split(π) A1← , . . . ,Am← . Because chosen arbitrarily, it suffices to show that the
ground Cγ⇒split(ε) A1δ← , . . . ,Amδ← inference is redundant wrt. B∞.

Because the inference C⇒split(π) A1← , . . . ,Am← is redundant wrt. B j its instance
Cγ⇒split(ε) A1δ← , . . . ,Amδ← is redundant wrt. B j. By definition of redundancy this
means that Aiδ← is redundant wrt. B j, for some i with 1 ≤ i ≤ m. By Lemma A.8
then Aiδ← is redundant wrt. B∞. It follows immediately that the ground inference
Cγ⇒split(ε) A1δ← , . . . ,Amδ← is redundant wrt. B∞, which remained to be shown. ut

Proposition 4.4 (Exhausted branches are saturated up to redundancy). If B is an
exhausted branch of a limit tree of some fair derivation then B∞ is saturated up to
redundancy.

Proof. Suppose B is an exhausted branch of a limit tree of some fair derivation. Accord-
ing to Definition 3.1 it suffices to chose arbitrarily a clause C ∈B∞ that is not redundant
wrt. B∞ and prove the properties 1-3 claimed there for C.

Before doing that, notice that if there is a j < κ such that C is redundant wrt. B j
then by Lemma A.8 the clause C is redundant wrt. B∞ and nothing remains to be shown
for C. Hence suppose from now on that C is not redundant wrt. B j, for all j < κ.

1. C⇒split(π) A1← , . . . ,Am←
Suppose there is an inference C⇒split(π) A1← , . . . ,Am← . It suffices to show that this
inference is redundant wrt. B∞, or that Cπ is redundant wrt. B∞.

If there is a j < κ such that Cπ is redundant wrt. B j then by Lemma A.8 Cπ is
redundant wrt. B∞, and nothing remains to be shown. Hence suppose that Cπ is not
redundant wrt. B j, for all j < κ.

It suffices to show that an arbitrarily chosen ground instance of the inference C⇒split(π)
A1 ← , . . . ,Am ← . is redundant wrt. B∞. Hence let γ be an arbitrary ground substitu-
tion for C such that γ = πδ for some substitution δ, and such that Cγ⇒split(ε) A1δ←

24

, . . . ,Amδ← is a ground instance of of the inference C⇒split(π) A1← , . . . ,Am← . We
will show that this ground inference is redundant wrt. B∞.

From C ∈ B∞ it follows there is an i < κ such that for all j ≥ i with j < κ it holds
C ∈ B j. Because of C⇒split(π) A1← , . . . ,Am← Split is applicable (in particular) to Bi
with underlying inference C⇒split(π) A1← , . . . ,Am← unless A j ← , for some j with
i ≤ j ≤ m is contained as a variant in Bi. In this case, by virtue of the ground instance
A jδ← of A j ← it follows that the ground instance Cγ⇒split(ε) A1δ← , . . . ,Amδ← is
redundant wrt. Bi and nothing remains to be shown.

Recall we are considering the case that Cπ is not redundant wrt. B j, for every j < κ.
But then, by Definition 4.2-1 there is a k < κ such that the inference C⇒split(π) A1←

, . . . ,Am← is redundant wrt. Bk. By Lemma A.11 then, this inference is redundant wrt.
B∞. Therefore, in particular its (ground) instance Cγ⇒split(ε) A1δ← , . . . ,Amδ← is
redundant wrt. B∞, which remained to be shown.

2. C,D⇒R(σ) E, where R ∈ {sup-left,unit-sup-right}
This case is concerned with Equality inferences. More precisely, suppose there is an
inference C,D⇒R(σ) E, where R ∈ {sup-left,unit-sup-right} and D is a fresh variant of
a positive unit clause from B∞ and σ is some substitution.

It suffices to show that this inference is redundant wrt. B∞, or that Cσ or Dσ is
redundant wrt. B∞.

If there is a j < κ such that Cσ is redundant wrt. B j then by Lemma A.8 Cσ is
redundant wrt. B∞, and nothing remains to be shown. Hence suppose that Cσ is not
redundant wrt. B j, for all j < κ. By exactly the same argumentation, this time applied
to Dσ, we may assume that Dσ is not redundant wrt. B j, for all j < κ.

It suffices to show that an arbitrarily chosen ground instance of the inference C,D⇒R(σ)
E is redundant wrt. B∞. Hence let γ be an arbitrary ground substitution for C and D
such that γ = σδ for some substitution δ, and such that Cγ,Dγ⇒R(ε) Eδ is a ground in-
stance of of the inference C,D⇒R(σ) E. Hence we will show that this ground inference
Cγ,Dγ⇒R(ε) Eδ is redundant wrt. B∞.

From C ∈ B∞ it follows there is an i < κ such that for all j ≥ i with j < κ it holds
C ∈ B j. Likewise, from D being a variant of a clause in B∞ it follows there is an i′ such
that for all j′ ≥ i′ it holds D is a variant of a clause in B j′ . Without loss of generality
assume i≥ i′. It follows D is a variant of a clause in B j, for all j ≥ i.

From the just said, and because of C,D⇒R(σ) E, Equality is applicable (in particular)
to Bi with underlying inference C,D⇒R(σ) E unless E is contained as a variant in Bi.
In this case, the inference C,D⇒R(σ) E is redundant wrt. Bi and nothing remains to be
shown.

Recall we are currently considering the case that neither Cσ nor Dσ is redundant
wrt. B j, for every j < κ.

But then, by Definition 4.2-2 there is a k < κ such that the inference C,D⇒R(σ) E
is redundant wrt. Bk. By Lemma A.10 then, this inference is also redundant wrt. B∞.
Therefore, in particular its (ground) instance Cγ,Dγ⇒R(ε) Eδ is redundant wrt. B∞,
which remained to be shown.

3. C⇒ref(σ) E

25

This case is concerned with an Equality inference, more precisely with an application
of the ref rule. The proof is done analogously to case 2 and is omitted.

ut

Theorem 4.5 (Completeness of E-Hyper Tableaux). Let C be a clause set and D a
fair derivation of C . If D is not a refutation then C is satisfiable.

Proof. Suppose that D is not a refutation. Therefore its limit tree T has an exhausted
branch. Let B be any such exhausted branch.

By Proposition 4.4 the clause set B∞ is saturated up to redundancy. Moreover, B∞

cannot contain the empty clause, because, if it did, B would contain it too, but no ex-
hausted branch can contain the empty clause.

With Theorem 3.2 it follows B∞ is satisfiable. Moreover, the proof of Theorem 3.2
gives us a convergent rewrite system RB∞

such that RB∞
|=E B∞.

To prove the theorem it suffices to show RB∞
|=E C . To show that, let C be any clause

from C , and it suffices to show RB∞
|=E C. By definition of derivation, C ∈ B0, where

B0 is the (single) branch of the initial tableau T0 of the derivation D.
If C ∈ B∞ then with RB∞

|=E B∞ immediately conclude RB∞
|=E C. Hence suppose

C /∈ B∞ from now on.
From C ∈ B0 and C /∈ B∞ it follows that C has been removed at some time k < κ

from the clause set Bk by an application of the Del or the Simp derivation rule. We
distinguish both cases at once.

In the first subcase C has been removed by non-proper subsumption from Bk. Let
D ∈ Bk be the clause non-properly subsuming C. As an easy inductive consequence
of the definition of the Split and Equality derivation rules, no clause set Bi derived can
contain both a clause and a variant of it. Hence, D cannot be a variant of C and C must
be a proper instance of D. Because the ordering based on the converse relation, proper
generalization, is well-founded, by induction on this ordering there is a clause D′ in
B∞ that non-properly subsumes C (it could be D). Now, to D′ the case D′ ∈ B∞ above
applies and, clearly, RB∞

|=E D′ entails RB∞
|=E C.

In the second subcase C is redundant wrt. a specific subset B′ of the derived branch
Bk+1, where B′ is specified in the definition of the Del and Simp derivation rules. Be-
cause B′ ⊆ Bk+1 it follows trivially that C is redundant wrt. Bk+1.

By Lemma A.8, C is redundant wrt. B∞. With RB∞
|=E B∞ and Lemma A.9 it follows

RB∞
|=E C, which trivially implies RB∞

|=E C. ut

26

