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1 Introduction

In propositional satisfiability the DPLL procedure, named after its authors:
Davis, Putnam, Logemann, and Loveland (Davis and Putnam, 1960; Davis
et al., 1962), is the dominant method for building (complete) SAT solvers.
Its popularity is due to its simplicity, its polynomial space requirements, and
the fact that, as a search procedure, it is amenable to powerful but also rel-
atively inexpensive heuristics for reducing the search space. Thanks to these
heuristics and to very careful engineering, the best SAT solvers today can suc-
cessfully attack real-world problems with hundreds of thousands of variables
and of clauses (Moskewicz et al., 2001; Goldberg and Novikov, 2002). These
solvers are so powerful that many developers of automated reasoning-based
tools are starting to use them as back-ends to solve first-order satisfiability
problems, albeit often in an incomplete way, by means of ingenious domain
specific translations into propositional logic (Joshi et al., 2001; Jackson, 2000;
Strichman et al., 2002).

Interestingly, the DPLL procedure was actually devised in origin as a proof-
procedure for first-order logic. Its treatment of quantifiers is highly inefficient,
however, because it is based on enumerating all possible ground instances of
an input formula’s clause form, and checking the propositional satisfiability of
each of these ground instances one at a time. Because of its primitive treat-
ment of quantifiers the DPLL procedure, which predates Robinson’s resolution
calculus by a few years, was quickly overshadowed by resolution as the method
of choice for automated first-order reasoning, and its use has been confined to
propositional satisfiability ever since. 2

Given the great success of DPLL-based SAT solvers today, two natural re-
search questions arise. One is whether the DPLL procedure can be properly
lifted to the first-order level—in the sense first-order resolution lifts proposi-
tional resolution, say. The other is whether those powerful search heuristics
that make DPLL so effective at the propositional level can be successfully
adapted to the first-order case. We answer the first of these two questions
affirmatively in this paper, providing a complete lifting of the DPLL proce-
dure to first-order clausal logic by means of a new sequent-style calculus, the
Model Evolution calculus, or ME for short. The ME calculus can be used to
answer the second question affirmatively as well, as we show in a companion
paper (Baumgartner et al., 2006a) describing a recent implementation of the
calculus.

The FDPLL calculus by Baumgartner (Baumgartner, 2000) was the first suc-
cessful attempt to lift the DPLL procedure to the first-order level without

2 But see Section 6 for a brief overview of first-order reasoning systems that use
the procedure to help them focus their search.

2



resorting to ground instantiations. FDPLL lifts to the first-order case the core
of the DPLL procedure, the splitting rule, but ignores another major aspect,
unit propagation (Zhang and Stickel, 1996), that although not necessary for
its completeness is absolutely crucial to its effectiveness in practice. The cal-
culus described in this paper lifts this aspect as well. While the ME calculus
borrows many fundamental ideas from FDPLL and generalizes it, it is not an
extension of FDPLL proper but of DPLL (Tinelli, 2002), a simple propositional
calculus modeling the main features of the DPLL procedure. As we will see,
the Model Evolution calculus is a direct lifting of DPLL in the sense that it
consists of appropriate first-order versions of DPLL’s rules, plus one additional
rule specific to the first-order case.

A very useful feature of the DPLL procedure—and of most propositional proof
procedures for that matter—is that it is able to provide a (Herbrand) model
of the input formula whenever that formula is satisfiable. The procedure, and
by extension the DPLL calculus, generates this model incrementally during
a derivation. The Model Evolution calculus can be seen as lifting this model
generation process to the first-order level. We could say that the purpose of the
Model Evolution calculus is, like the DPLL calculus, to construct a Herbrand
model of a given set Φ of clauses, if any such model exists.

At each step of a derivation the calculus maintains a context Λ, that is, a finite
set of (possibly non-ground) literals. The context Λ is a finite—and compact—
representation of a Herbrand interpretation IΛ serving as a candidate model
for Φ. The induced interpretation IΛ might not be a model of Φ because it
might not satisfy some clauses in Φ. The purpose of the main rules of the
calculus is to detect this situation and either repair IΛ, by modifying Λ, so
that it becomes a model of Φ, or recognize that IΛ is unrepairable and fail.
In addition to these rules, the calculus contains a number of simplification
rules whose purpose is, again like in DPLL, to simplify the clause set and, as
a consequence, to speed up the computation.

We call our calculus Model Evolution calculus because it starts with a default
candidate model, one that satisfies no positive literals, and “evolves it” as
needed until it becomes an actual model of the input clause set Φ, or until it
is clear that Φ has no models at all. Note that the DPLL calculus can be seen
as doing exactly the same thing, but for ground formulas only. The Model
Evolution calculus simply extends this behavior to non-ground formulas as
well. An important by-product of this model evolution process is that every
terminating derivation of a satisfiable clause set Φ produces a context whose
induced interpretation is indeed a model of Φ. This makes the calculus well
suited for all applications in which it is important to also provide counter-
examples of invalid statements, as opposed to simply proving their invalidity.

The Model Evolution calculus is refutationally sound and complete: an input
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clause set Φ is unsatisfiable if and only if the calculus (finitely) fails to find a
model for Φ. The calculus is obviously non-terminating for arbitrary, satisfiable
input sets. With some of these clause sets, the calculus might go on repairing
their candidate model forever, without ever turning it into an actual model.
The calculus is however terminating for the class of ground clauses (of course),
and for the class of clauses resulting from the translation of conjunctions of
Bernays-Schönfinkel formulas into clause form. 3 The termination for ground
clause sets is a direct consequence of the fact that with such inputs the Model
Evolution calculus reduces to the DPLL calculus, as we will show. The reasons
for termination for Bernays-Schönfinkel formulas are similar to those given in
(Baumgartner, 2000) for FDPLL.

As mentioned, the Model Evolution calculus is already a significant improve-
ment over FDPLL because it is a more faithful litfing of the DPLL procedure,
having additional rules for simplifying the current clause set and the current
context. Another advantage over FPDLL is that it contains a more system-
atic and general treatment of universal literals, one of FDPLL’s optimizations.
As we will see, adding literals with universal variables to a context imposes
stronger restrictions on future modification of that context. This has the con-
sequence of greatly reducing the non-determinism in the calculus, and hence
the potential of leading to much faster implementations.

The paper is organized as follows. After some formal preliminaries, given be-
low, we briefly describe in Section 2 the DPLL procedure, and define the DPLL
calculus, a declarative version of the procedure. We then define and discuss
the Model Evolution calculus, in Section 3, showing how it extends DPLL. We
prove the calculus’ correctness in Section 4. In Section 5 we briefly describe
a proof procedure for the calculus as implemented in the Darwin theorem
prover (Baumgartner et al., 2006a). Then we discuss in Section 6 how the
calculus compares to other calculi in related work. We conclude the paper
in Section 7 with directions for further research. The more technical results
needed in Section 4 are proved in detail in the appendix.

1.1 Formal Preliminaries

In this paper, we use two disjoint, infinite sets of variables: a set X of universal
variables, which we will refer to just as variables, and another set V , which
we will always refer to as parameters. The reason for having two types of
variables will be explained later. We will use, possibly with subscripts, u, v to
denote elements of V , x, y to denote elements of X, and w to denote elements
of V ∪ X. We fix a signature Σ throughout the paper. We denote by Σsko

the expansion of Σ obtained by adding to Σ an infinite number of (Skolem)

3 Such clauses contain no function symbols, but no other restrictions apply.
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constants not already in Σ. By Σ-term (Σsko-term) we mean a term of signature
Σ (Σsko) over V ∪ X. In the following, we will simply say “term” to mean a
Σsko-term. If t is a term we denote by Var(t) the set of t’s variables and by
Par(t) the set of t’s parameters. A term t is ground iff Var(t) = Par(t) = ∅.
Two terms are variable-disjoint (parameter-disjoint) iff they have no variables
(parameters) in common. They are disjoint iff they are both variable- and
parameter-disjoint. We extend the above notation and terminology to literals
and clauses in the obvious way.

We adopt the usual notion of substitution over Σsko-expressions or sets thereof.
We also use the standard notion of unifier and of most general unifier. We will
denote by {w1 7→ t1, . . . , wn 7→ tn} the substitution σ such that wiσ = ti for
all i = 1, . . . , n and wσ = w for all w ∈ X ∪ V \{w1, . . . , wn}. Also, we will de-
note by Dom(σ) the set {w1, . . . , wn} and by Ran(σ) the set {w1σ, . . . , wnσ}.

If σ is a substitution and W a subset of X ∪ V , the restriction of σ to W ,
denoted by σ|W is the substitution that maps every w ∈ W to wσ and every
w ∈ (V ∪ X)\W to itself. A substitution ρ is a renaming on W ⊆ (V ∪ X) iff
ρ|W is a bijection of W onto W . For instance ρ := {x 7→ u, v 7→ u, u 7→ v} is a
renaming on V . Note however that ρ is not a renaming on V ∪ X as it maps
both x and v to u. We call a substitution simply a renaming if it is a renaming
on V ∪ X. We call a substitution σ parameter-preserving , or p-preserving for
short, if it is a renaming on V . Similarly, we call σ variable-preserving if it is a
renaming on X. Note that a renaming is parameter-preserving iff it is variable-
preserving. For example, the renaming {x 7→ y, y 7→ x, u 7→ v, v 7→ u} is both
variable- and parameter-preserving, wheres the renaming {x 7→ v, v 7→ x} is
neither variable-preserving nor parameter-preserving.

If s and t are two terms, we say that s is more general than t, and write
s & t, iff there is a substitution σ such that sσ = t 4 . We say that s is a
variant of t, and write s ≈ t, iff s & t and t & s or, equivalently, iff there is
a renaming ρ such that sρ = t. We write s � t if s & t but s 6≈ t. We say
that s is parameter-preserving more general than t, and write s ≥ t, iff there
is a parameter-preserving substitution σ such that sσ = t. When s ≥ t we will
also say that t is a p-instance of s. Since the empty substitution is parameter-
preserving and the composition of two parameter-preserving substitutions is
also parameter preserving, it is immediate that the relation ≥ is, like &, both
reflexive and transitive. We say that s is a parameter-preserving variant, or
p-variant, of t, and write s ' t, iff s ≥ t and t ≥ s; equivalently, iff there is
a parameter-preserving renaming ρ such that sρ = t. We write s 
 t if s ≥ t
but s 6' t. Note that both ' and ≈ are equivalence relations.

All of the above about substitutions is extended from terms to literals, that is,

4 The unification literature would write s . t in the case above.
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atomic formulas or negated atomic formulas, in the obvious way. We denote
literals in general by the letters K,L. We denote by L the complement of a
literal L. As usual, a clause is a disjunction L1 ∨ · · · ∨ Ln of zero or more
literals. We denote clauses by the letters C and D and the empty clause by 2.
We write L ∨ C to denote a clause obtained as the disjunction of a (possibly
empty) clause C and a literal L. When convenient, we will treat a clauses as
the set of its literals.

A Skolemizing substitution is a substitution θ with Dom(θ) ⊆ X that replaces
each variable in Dom(θ) by a fresh Skolem constant and every remaining ele-
ment of X ∪ V by itself. A Skolemizing substitution for a literal L (clause C) is
a Skolemizing substitution θ with Dom(θ) = Var(L) (Dom(θ) = Var(C)). We
write Lsko (Csko) to denote the result of applying to L (C) some Skolemizing
substitution for L (C).

A (Herbrand) interpretation I over some signature Ω is a set of ground Ω-
literals that contains either L or L, but not both, for every ground Ω-literal
L. Satisfiability of Ω-literals and Ω-clauses in I is defined as follows. The
interpretation I satisfies (or is a model of) a ground literal L, written I |= L,
iff L ∈ I; I satisfies a ground clause C, iff I |= L for some L in C; I satisfies
a clause C, iff I |= C ′ for all ground instances C ′ of C; I satisfies a clause set
Φ, iff I |= C for all C ∈ Φ in C. The interpretation I falsifies a literal L (a
clause C) if it does not satisfy L (C). Sometimes we will also say that a clause
C is valid in I to mean that I |= C.

2 The DPLL Calculus

The DPLL procedure can be used to decide the satisfiability of ground (or
propositional) formulas in conjunctive normal form or, more precisely, the
satisfiability of finite sets of ground clauses. The three essential operations
of the procedure are (i) unit resolution with backward subsumption, (ii) unit
subsumption, and (iii) recursive reduction to smaller problems. The procedure
can be roughly described as follows. 5

Given an input clause set Φ, whose satisfiability is to be checked, apply
unit propagation to it, that is, close Φ under unit resolution with backward
subsumption, and eliminate in the process (a) all non-unit clauses subsumed
by a unit clause in the set and (b) all unit clauses whose atom occurs only
once in the set. If the closure Φ∗ of Φ contains the empty clause, then
fail. If Φ∗ is the empty set, then succeed. Otherwise, choose an arbitrary

5 See the original papers (Davis and Putnam, 1960; Davis et al., 1962), among
others, for a more complete description.
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Split
Λ ` Φ, L ∨ C

Λ, L ` Φ, L ∨ C Λ, L ` Φ, L ∨ C
if


C 6= 2,

L /∈ Λ,
L /∈ Λ

Assert
Λ ` Φ, L

Λ, L ` Φ, L
if

{
L /∈ Λ,
L /∈ Λ

Subsume
Λ, L ` Φ, L ∨ C
Λ, L ` Φ

Empty
Λ ` Φ, 2

Λ ` 2
if Φ 6= ∅ Resolve

Λ, L ` Φ, L ∨ C
Λ, L ` Φ, C

Fig. 1. The DPLL Calculus.

literal L from Φ∗ and check recursively, and separately, the satisfiability of
Φ∗ ∪ {L} and of Φ∗ ∪ {L}, succeeding if and only if one of the two subsets
is satisfiable.

The essence of this procedure can be captured by a sequent-style calculus, the
DPLL calculus, first described in (Tinelli, 2002), consisting of the derivation
rules in Figure 1.

The calculus manipulates sequents of the form Λ ` Φ, where Λ, the context
of the sequent, is a finite set of ground literals and Φ is a finite (multi)set of
ground clauses. 6

The intended goal of the calculus is to derive a sequent of the form Λ ` ∅
from an initial sequent ∅ ` Φ0, where Φ0 is a clause set to be checked
for satisfiability. If that is possible, then Φ0 is satisfiable; otherwise, Φ0 is
unsatisfiable. Informally, the purpose of the context Λ is to store incrementally
a set of asserted literals, i.e., a set of literals in Φ0 that must or can be true
for Φ0 to be satisfiable. When Λ ` ∅ is derivable from ∅ ` Φ0, the context Λ
is indeed a witness of Φ0’s satisfiability as it describes a (Herbrand) model of
Φ0: one that satisfies an atom p in Φ0 iff p occurs positively in Λ.

The context is grown by the Assert and the Split rules. The Assert rule models
the fact that every literal occurring as a unit clause in the the current clause
set must be satisfied for the whole clause set to be satisfied. The Split rule
corresponds to the decomposition in smaller subproblems of the DPLL proce-
dure. This rule is the only don’t-know non-deterministic rule of the calculus.
It is used to guess the truth value of an undetermined literal L in the clause

6 As customary, we write Λ, L ` Φ, C, say, to denote the sequent Λ ∪ {L} `
Φ ∪ {C}.
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set Φ of the current sequent Λ ` Φ, where by undetermined we mean such
that neither L nor L is in the context Λ. The guess allows the continuation of
the derivation with either the sequent Λ, L ` Φ or with the sequent Λ, L ` Φ.

The other two main operations of the DPLL procedure, unit resolution with
backward subsumption and unit subsumption, are modeled respectively by
the Resolve and the Subsume rule. The Resolve rule removes from a clause all
literals whose complement has been asserted—which corresponds to generat-
ing the simplified clause by unit resolution and then discarding the old clause
by backward subsumption. The Subsume rule removes all clauses that contain
an asserted literal—because all of these clauses will be satisfied in any model
in which the asserted literal is true.

The DPLL calculus is easily proven sound, complete and terminating. It can
be shown (Tinelli, 2002) that the calculus maintains its completeness even if
one constrains the Split rule to split only on positive literals. 7 In other words,
there is no loss of completeness if Split is replaced by the rule:

Split’
Λ ` Φ, L ∨ C

Λ, L ` Φ, L ∨ C Λ, L ` Φ, L ∨ C
if


L is positive,
C 6= 2,

L /∈ Λ,
L /∈ Λ

Another change that does not alter the calculus in any fundamental way is
the replacement of the Assert and Empty rules by the following more powerful
versions:

Assert’
Λ ` Φ, L1 ∨ · · · ∨ Ln ∨ L
Λ, L ` Φ, L1 ∨ · · · ∨ Ln ∨ L

if


n ≥ 0,
L1, . . . , Ln ∈ Λ,
L /∈ Λ,
L /∈ Λ

Close
Λ ` Φ, L1 ∨ · · · ∨ Ln
Λ ` 2

if

{
Φ 6= ∅ or n > 0,
L1, . . . , Ln ∈ Λ

Note that Assert’ and Close reduce respectively to Assert and Empty given
earlier when L1 ∨ · · · ∨ Ln has no literals (i.e., if n = 0). The reason Assert’

7 This fact is known in the SAT literature and is used as an optimization some
DPLL-based SAT solvers.
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and Close do not really change the calculus is that each application of Assert’,
respectively Close, can be simulated by n applications of Resolve followed by
one application of Assert, repectively Empty. We point out that with Close the
Resolve rule becomes superfluous for completeness.

We mention the Split’, Assert’ and Close rules here because they will facilitate
our comparison between the Model Evoution calculus and DPLL.

3 The Model Evolution Calculus

The Model Evolution calculus is a direct lifting of the DPLL calculus to the
first-order level. The lifting is achieved with a suitable first-order version of the
rules Split’, Assert’, Subsume, Resolve and Close of DPLL, with the addition of
an extra rule, Compact, which is a simplification rule specific to the first-order
case.

Similarly to DPLL, the derivation rules of the Model Evolution calculus apply
to and produce sequents of the form Λ ` Φ. This time, however, Λ is a finite
set of literals possibly with variables and parameters, called again a context,
and Φ is a set of clauses possibly with variables.

As mentioned in the introduction, the context Λ in a sequent Λ ` Φ determines
an interpretation IΛ meant to be a model of Φ. The purpose of the main rules
of the calculus is to recognize when IΛ is not a model of Φ, and repair it so that
it can become one. The repairs are both localized and incremental, and based
on the computation of most general unifiers. The progressive repair process
or evolution of the candidate model starts with a default interpretation and
continues until an actual model is found or no further repairs are possible. The
calculus is non-deterministic because in some cases the current interpretation
can be repaired in two alternative ways, neither of which can be ruled out a
priori. With an initial sequent Λ0 ` Φ0 then, this gives rise to a search space
of possible evolution sequences for IΛ0 , the initial candidate model for Φ0.

To ease the technical presentation it comes handy to work with a pseudo-
literal ¬v, where v is a parameter that ranges over atoms. The intention is to
have ¬v stand by default for all negative literals.

We will show that when Φ0 is unsatisfiable and Λ0 is just {¬v} all possible
evolution sequences are finitely failed—making the calculus complete. We will
also show that, conversely, if all evolution sequences for I{¬v} are finitely failed,
then Φ0 is guaranteed to be unsatisfiable—making the calculus sound as well.
In the process, we will also show that non-failed finite sequences that cannot
be grown further end with a context whose candidate model is indeed a model
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of Φ0.

3.1 Contexts and Interpretations

The defining aspect of the calculus, modeled after FDPLL, is the way con-
texts are extended to the first-order case, and the rôle they play in driving the
derivation and the model generation process. Therefore, we start our descrip-
tion of the calculus with them.

Definition 3.1 (Context) A context is a set of the form {¬v} ∪ S where
v ∈ V and S is a finite set of literals.

Where L is a literal and Λ a context, we will write L ∈≈ Λ if L is a variant of
a literal in Λ, L ∈' Λ if L is a p-variant of a literal in Λ, and L ∈≤ Λ if L is a
p-instance of a literal in Λ.

The calculus works only with non-contradictory contexts.

Definition 3.2 (Contradictory) A literal L is contradictory with a context
Λ iff Lσ = Kσ for some K ∈' Λ and some p-preserving substitution σ. A
context Λ is contradictory iff it contains a literal that is contradictory with Λ.

Example 3.3 Let Λ := {¬v, p(x1, y1), ¬q(v1)}. Then ¬p(h(x), u), ¬p(v, u),
and q(y) are all contradictory with Λ. However, q(f(v)) and r(x), say, are
not. (Recall that x, x1, y1 are variables while v, v1, u are parameters.)

A non-contradictory context induces a unique Herbrand interpretation by
means of the next three notions.

Definition 3.4 (Shields) Let K, L be literals with K & L. A literal K ′

strongly shields L from K iff K � K ′ & L, and K ′ shields L from K iff
K � K ′′ & L for some literal K ′′ with K ′ ≥ K ′′. A context Λ (strongly)
shields L from K iff it contains a literal that (strongly) shields L from K.

Equivalently, Λ shields L from K iff K � K ′′ & L, for some K ′′ ∈≤ Λ.

Definition 3.5 (Covers) Let L be a literal and Λ a context. A literal K
strongly covers L in Λ iff K & L and Λ does not shield L from K, and K
covers L in Λ iff K & L and Λ does not strongly shield L from K.

Definition 3.6 (Productivity) Let L be a literal, C a clause, and Λ a con-
text. A literal K produces L in Λ iff

(1) K covers L in Λ, and
(2) there is no K ′ ∈ Λ that
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(a) strongly covers L in Λ and
(b) shields L from K.

The context Λ produces L iff it contains a literal K that produces L in Λ. The
context Λ produces C iff it produces one of C’s literals.

From this definition it follows that any non-contradictory context containing
a parameter-free literal K produces all instances of K and does not produce
any instance of K. This is a special case of a more general result, saying that
any literal K produces all its p-instances in that context and does not produce
any p-instance of K (cf. Lemma 8.6 below).

To help clarify their relationship, the concepts of shielding, covering and pro-
ducing are illustrated in Figure 2.

Example 3.7 Consider the context Λ = {¬v,¬p(x, u, a), p(v, a, x)}. Now,
p(u, u, w) produces p(a, a, a) in Λ, because p(u, u, w) covers p(a, a, a) in Λ
and there is no K ′ ∈ Λ that strongly covers ¬p(a, a, a) in Λ and that shields
p(a, a, a) from p(u, u, w). In fact, the only candidate literal for K ′ is ¬p(x, u, a).
That literal does shield p(a, a, a) from p(u, u, w)—which means that p(u, u, w)
does not strongly cover p(a, a, a) in Λ; however, it does not strongly cover
p(a, a, a) = ¬p(a, a, a) in Λ because p(v, a, x) ∈ Λ shields ¬p(a, a, a) from
¬p(x, u, a).

The context Λ produces p(a, a, b) because p(v, a, x) & p(a, a, b) and Λ does not
shield p(a, a, a) from p(v, a, x). But Λ does not produce ¬p(v, a, a). Although
¬p(x, u, a) & ¬p(v, a, a) holds, there is a literal in Λ, namely p(v, a, x), that
strongly covers p(v, a, a) in Λ and that shields ¬p(v, a, a) from ¬p(x, u, a). ut

A consequence of the presence of the pseudo-literal ¬v in every context Λ is
that Λ produces L or L for every literal L. We can use this fact to associate
to Λ a unique Herbrand interpretation.

Definition 3.8 (Induced interpretation) Let Λ be a non-contradictory con-
text with signature Σsko. The interpretation induced by Λ, denoted by IΛ, is
the Herbrand Σ-interpretation that satisfies a positive ground Σ-literal L iff L
is produced by Λ.

For simplicity, we will sometimes say that a context satisfies/falsifies a literal
or a clause if its induced interpretation does so.

Note that while a context can contain literals with Skolem constants with
respect to some original signature Σ, the induced interpretation is over the
original signature only. Also note that since it is possible for a context Λ to
produce both a positive ground literal L and its complement L, the above
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K ′

&
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K

L
(a) K ′ strongly shields L from K.

K ′′

&

�

KK ′

L

≥

(b) K ′ shields L from K.

K ′ ∈ Λ

&

�

K

L
(c) K covers L in Λ.

K ′′

&

�

KK ′ ∈ Λ

L

≥

(d) K strongly covers L in Λ.

K ′′′′ ∈ Λ

K ′′

&

�

K

L

≥

K ′′′

&

�

K ′ ∈ Λ

L

≥

(e) The only possible scenario when K covers L in Λ but K does not produce
L in Λ: some literal K ′ ∈ Λ shields L from K, and K ′ strongly covers L in Λ
(and hence produces L in Λ).

Fig. 2. Illustrations of the notions “shields”, “covers” and “produces”. See Defini-
tions 3.4, 3.5 and 3.6 for notation.

definition is asymmetric, because in that case IΛ always chooses to satisfy L
over L. Contrapositively, this means that if IΛ satisfies a ground literal L and
L is positive, then L and possibly also L are produced by Λ. If on the other
hand L is negative, then L but not L is produced by Λ.
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It should be clear now that the purpose of the pseudo-literal ¬v in a context
Λ is to provide a default truth-value to those ground literals whose value is
not determined by the rest of the context. In fact, consider a ground Σ-literal
L such that neither L nor L is produced by Λ \ {¬v}. If L is positive, then it
is false in IΛ because it is not produced by Λ at all. If L is negative, then it is
true in IΛ because it is produced by ¬v.

At this point a clarification on the complexity of the definition of productivity
is perhaps in order. One might think that the more intuitive definition stating
that

K produces L in Λ iff K strongly covers L in Λ,

is good enough to support Definition 3.8. While simpler, this definition is how-
ever not adequate for our purposes. The reason is that there exist (somewhat
complicated) contexts Λ and ground literals L such that Λ produces neither
L or L according to the simpler definition above. 8 Now, the requirement that
any context Λ produce L or L for every ground literal L is fundamental for
us, because it is used in the calculus to identify context literals that cause
ground clause instances to be falsified by the current induced interpretation
(see later). This requirement is indeed satisfied by the given Definition 3.6:
should a candidate literal K ∈ Λ cover L in Λ but not produce L in Λ, then
there will be a literal K ′ ∈ Λ that shields L from K and produces L in Λ (cf.
Figure 2-(e)).

We refer the reader to (Fermüller and Pichler, 2005) for a study on the com-
plexity of basic reasoning tasks on contexts 9 and their relation to other model
representation formalisms.

For a given sequent Λ ` Φ the interpretation induced by the context Λ may
falsify a clause of Φ. This situation is detectable through the computation of
context unifiers.

Definition 3.9 (Context Unifier) Let Λ be a context and

C = L1 ∨ · · · ∨ Lm ∨ Lm+1 ∨ · · · ∨ Ln

a parameter-free clause, where 0 ≤ m ≤ n. A substitution σ is a context unifier
of C against Λ with remainder Lm+1σ∨· · ·∨Lnσ iff there are fresh p-variants
K1, . . . , Kn ∈' Λ such that

8 In essence, this is possible because context literals may shield each other in a
cyclic way, preventing each one from producing L or L.
9 However, note that the context literals in (Fermüller and Pichler, 2005) are all
variable-free or parameter-free. The “mixed” setting, where context literals may
contain both variables and parameters is being introduced with this paper.
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(1) σ is a most general simultaneous unifier of {K1, L1}, . . . , {Kn, Ln},
(2) for all i = 1, . . . ,m, (Par(Ki))σ ⊆ V ,
(3) for all i = m+ 1, . . . , n, (Par(Ki))σ 6⊆ V .

We say, in addition, that σ is productive iff Ki produces Liσ in Λ for all
i = 1, . . . , n.

For i = 1, . . . , n, we call Ki a context literal of σ. A context unifier σ of C
against Λ with remainder Lm+1σ∨ · · · ∨Lnσ is admissible (for Split) iff for all
distinct i, j = m+ 1, . . . , n, Var(Liσ) ∩ Var(Ljσ) = ∅.

Note that each context unifier has a unique remainder. If σ is a context unifier
of a clause C with remainder D we call each literal of D a remainder literal
of σ.

Example 3.10 Let Λ := {¬v, p(v1, u1), ¬p(x1, g(x1)), q(v2, g(v2))} and
C1 = r(x) ∨ ¬p(x, y). Then, the substitutions

σ1 := {v 7→ r(x), v1 7→ x, u1 7→ y}
σ2 := {v 7→ r(v1), x 7→ v1, u1 7→ y}

are both context unifiers of C1 against Λ with respective remainders r(x) ∨
¬p(x, y) and r(v1) ∨ ¬p(v1, y). While both σ1 and σ2 are productive, only σ2

is admissible. The context unifier σ1 is not admissible because its remainder
literals are not variable-disjoint. By contrast, the substitution

σ3 := {v 7→ r(v1), x 7→ v1, y 7→ u1}

is a context unifier of C1 against Λ, this time with remainder r(v1), that is
both productive and admissible.

Consider now the clause C2 = ¬p(x, y) ∨ ¬q(x, y). The substitution

σ4 := {v1 7→ v2, u1 7→ g(v2), x 7→ v2, y 7→ g(v2)}

is a context unifier of C2 against Λ with remainder ¬p(v2, g(v2)). This context
unifier is admissible but it is not productive because the literal p(v1, u1) of Λ
chosen to unify with ¬p(x, y) does not produce ¬p(x, y)σ4 = p(v2, g(v2)). ut

We point out for later comparisons with the DPLL calculus that when, in
Definition 3.9, C is ground and ¬v is the only non-ground literal of Λ, the
substitution σ is a context unifier of C against Λ with remainder (Lm+1σ ∨
· · · ∨ Lnσ) = (Lm+1 ∨ · · · ∨ Ln) iff

(1) for all i = 1, . . . ,m, Ki = Li and
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(2) for all i = m + 1, . . . , n, Li is a positive literal and Ki is a p-variant of
¬v.

Admissible context unifiers are fundamental in the Model Evolution calculus.
In fact, with a context Λ and a clause C, the existence of an admissible context
unifier of C against Λ is a sign that IΛ might not be a model of C. This is
because it is possible to compute an admissible context unifier of C against
Λ whenever Λ is non-contradictory and IΛ falsifies C. The discovery by the
calculus of an admissible context unifier σ of C against the current context
Λ prompts a modification of Λ that involves adding a literal of Cσ, with the
goal of making C valid in the new IΛ. This literal is chosen only among the
remainder literals of σ, the reason being essentially that non-remainder literals
can be ignored with no loss of completeness.

Note that while the existence of an admissible context unifier σ of C against
Λ is necessary for the unsatisfiability of C in IΛ, it is not sufficient unless σ
is also productive. As a matter of fact, for completeness the calculus needs
to add to the context only remainder literals of admissible unifiers that are
also productive. For greater flexibility, however, we allow it to add remain-
der literals of non-productive admissible unifiers as well. The reason is mostly
practical and twofold: first, when implementing the calculus, insisting on com-
puting only productive context unifiers can be considerably more expensive
than computing context unifiers that are usually, although not always, produc-
tive; second, sometimes “repairing” candidate models with remainder literals
from non-productive context unifiers can produce more constrained contexts,
as illustrated in the example that follows.

Example 3.11 Consider the context Λ := {¬v, p(u), ¬q(g(y))} and the
clause C := p(x) ∨ q(x). The substitution

σ := {v 7→ p(g(y)), x 7→ g(y)}

is a context unifier of C against Λ with remainder p(g(y)), but it is not pro-
ductive. As a matter of fact, IΛ satisfies C, and so Cσ, because Λ produces
every ground instance of p(x). This means that there is no need to repair IΛ

with the addition of p(g(y)) to Λ. However, as we explain in Section 3.2, hav-
ing the universal literal p(g(y)) in Λ along with p(u) considerably constrains
further repairs involving instances of p(u), with a corresponding reduction in
the search space. ut

Productivity issues aside, we point out that although context unifiers for a
given clause C and context Λ are easily computable (they are just simultane-
ous most general unifiers), they are not unique and may not be admissible.
Nevertheless, the calculus does not need to search for all admissible context
unifiers. For completeness purposes any admissible context unifier of C against
Λ will do. Furthermore, and more important, admissible context unifiers are

15



easily derived from non-admissible ones. In fact, let σ be a context unifier of
C against Λ with remainder D. If σ has a remainder literal L that shares vari-
ables with another remainder literal, one can compose σ with a substitution
that moves the variables of L to fresh parameters and fixes everything else. It
is easy to see that a repeated application of this process leads to an admissible
context unifier σρ of C whose remainder is included in Dρ. For instance, the
non-admissible context unifiers σ1 in Example 3.10 can be turned into the
admissible one σ3 by this kind of process.

Now, while the choice of an admissible context unifier over another is irrelevant
for completeness, some context unifiers are better than others for efficiency
purposes. A context unifier with an empty remainder for instance is always
preferrable to one with an non-empty remainder, because it lets the calculus
stop the derivation right away, as we will see. In general, context unifiers with a
smaller remainder are preferable over context unifiers with a longer remainder
because offer less choices for repairing the current model. Also, context uni-
fiers with parameter-free remainder literals are preferable over context unifiers
with variable-free remainder literals only. As we explain later, the addition of
a parameter-free literal to a context imposes more constraints on later addi-
tions than the addition of a variable-free literal, leading in principle to shorter
derivations.

3.2 Parameters vs. Variables

Before moving to describe the rules of the Model Evolution calculus, it is
important to clarify the respective rôles that parameters and variables play in
it.

We said that the calculus manipulates sequents of the form Λ ` Φ, where
Φ is a clause set and Λ is a context providing a candidate model for Φ. Each
derivation in the calculus starts with a sequent of the form ¬v ` Φ0, where Φ0

contains only standard clauses, i.e., clauses with no parameters—but possibly
with variables. Similarly, all sequents generated during a derivation have clause
sets consisting of standard clauses only. Variables then can appear both in
clause sets and in contexts. Parameters instead can appear only in contexts.

The rôle of variables within a clause is the usual one: they stand for all ground
terms. In contrast, the rôle of variables and parameters within a context is to
constrain, in different ways, how a candidate model can be repaired.

The current context Λ needs repairing whenever it falsifies a clause C in Φ.
As we observed earlier, in that case there is an admissible context unifier σ of
C against Λ such that Λ falsifies Cσ as well. To satisfy C it is then necessary
to modify Λ so that it satisfies (at least) Cσ. One way to do that is to pick
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from Cσ a literal Lσ non-contradictory with Λ and add it to Λ. When Lσ
contains no parameters, that is, is a universal literal in FDPLL terminology,
the addition of Lσ will indeed make all ground instances of Lσ satisfied by
the new context. Moreover, it will make such instances permanently satisfied
in the sense that any further additions of literals to the context that do not
make it contradictory will preserve the satisfiability of those instances.

In contrast, when Lσ contains parameters, the assertion of all the ground Σ-
instances of Lσ is provisional: it can be retracted later, in whole or in part.
With the addition of Lσ to the context, the calculus is in essence making the
assumption that there is a model of C that satisfies all ground instances of Lσ.
This assumption, however, is just a working hypothesis, subject to be revised
when evidence against it is found. That happens if the calculus, to satisfy
some other clause, later adds to the current context Λ′ a literal K ′ that is a
(proper) instance of Lσ. 10 After the addition, the new context satisfies only
those instances of Lσ that are not an instance of Lσ′.

We observe that the less parameters a context literal has, the more of its in-
stances are parameter preserving—with the extreme cases of variable-free lit-
erals on one side, having no p-instances other than p-variants, and parameter-
free literals on the other, having only p-instances. This means that the less
the parameters in a context literal the more difficult it is to change the truth
value of its instances by extending the context. That can be seen with the
following simple example.

Example 3.12 Consider a signature Σ containing a constant symbol a, and
the contexts Λ1 = {¬v, L1}, Λ2 = {¬v, L2}, and Λ3 = {¬v, L3}, where L1 =
p(u, v), L2 = p(x, v), and L3 = p(x, y). All ground Σ-instances of Li are true
in IΛi

for i = 1, . . . , 3. In the first context, since p(u, v) is variable-free, it is
possible to change the truth of all literals of the form p(a, t) or p(t, a), with t a
ground term, by adding to Λ1 the literals ¬p(a, v) and ¬p(u, a). In the second
context, this is already not possible because the literal ¬p(a, v) is contradictory
with p(x, v). Nevertheless, it is still possible to change the truth value of all
the instances of p(x, v) of the form p(t, a), with the addition of ¬p(u, a). In
the last context, nothing can be done with either ¬p(a, v) or ¬p(u, a) because
they are both contradictory with p(x, y). ut

Because of the stronger restrictions they impose on the possible evolutions of
a context, variables in effect help prune the search space during derivations.
However, they cannot be added indiscriminately in place of parameters in
context literals without making the calculus incomplete. By using admissible

10 More generally, it happens if the calculus adds a literal K one of whose p-
preserving instances K ′ is an instance of Lσ. Note that in any case, K ′ must be
an non-parameter-preserving instance of Lσ, otherwise the new context would be
contradictory, which is not permitted.
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context unifiers the ME calculus is able to introduce a fair amount of variables
in contexts without loss of completeness.

3.3 Derivation Rules

The ME calculus consists of three basic derivation rules: Split, Assert and
Close, and three optional rules: Resolve, Subsume, and Compact. We define and
discuss them in the following. In the process, We also compare them with the
rules of the DPLL calculus to show that, modulo a technicality, ME reduces
to DPLL when the input clause set is ground. 11 The technicality is simply
that, contrary to DPLL, contexts in our calculus contain the pseudo literal ¬v.
Except for that, the two calculi operate on the same kind of sequents in the
ground case, and stepwise simulate each other.

The Split Rule

Split
Λ ` Φ, C ∨ L

Λ, Lσ ` Φ, C ∨ L Λ, (Lσ)
sko ` Φ, C ∨ L

if (∗)

where (∗) =



C 6= 2,

σ is an admissible context unifier of C ∨ L against Λ

with remainder literal Lσ,

neither Lσ nor (Lσ)
sko

is contradictory with Λ

We say that the clause C ∨L above is the selected clause, the literal L is
the selected literal, and σ is the context unifier of Split.

The Split rule is the analog of the Split’ rule in DPLL. As in DPLL, this is the
only (don’t-know) non-deterministic rule of the calculus, the one that drives
the search for a model for the input clause set. Split is the rule that discovers
when the current candidate model falsifies one of the clauses in the current
clause set. It does that by computing a context unifier σ with a non-empty
remainder for a clause with at least two literals. The rule attempts to repair
the candidate model by selecting a remainder literal Lσ and adding either Lσ
or its complement to the context. The reason for adding the complement of
Lσ in alternative to Lσ is of course that the current clause set may have no
models that satisfy Lσ. Obviously, the addition of Lσ’s complement to the
context will not make the selected clause C ∨ L valid in the new candidate
model. But it will make sure that no context unifier of C ∨ L has Lσ in its

11 More precisely, it reduces to the version of DPLL, described at the end of Sec-
tion 2, that uses the rules Split’, Assert’ and Close in place of Split, Assert, and
Empty, respectively.
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remainder, forcing the calculus to select other remainder literals, if any, to
make C ∨ L valid.

Note that Split does not exactly add the complement of Lσ to the current
context, but rather a suitably Skolemized version of it: one that replaces every
variable of Lσ by a fresh Skolem constant. 12 This is in accordance with our
treatment context literals as universally quantified wrt. their variables, which
essentially become existentially quantified after negation, thus leading to fresh
Skolem constants.

Example 3.13 If P (x, f(x), y, v, w) is the selected literal of a Split inference
with, say, empty context unifier, then this literal P (x, f(x), y, v, w) will be
added to the context in the left sequent, and the literal ¬P (c, f(c), d, v, w)
will be added to the context in the right sequent, where c and d are fresh
constants. ut

We point out that a Split inference cannot be followed on either branch by
another Split inference with the same literal Lσ (or a p-variant of it) because

then either Lσ or (Lσ)
sko

will be contradictory with the context. Since Split is
the only rule that introduces Skolemized literals into contexts, this implies in
particular that no context can contain more than one Skolemized version of
the same literal. It is not too difficult to check that these properties hold even
in presence of the Compact rule below, which removes literals from a context.

In the ground case—that is, when both Λ\{¬v} and Φ ∪ {C∨L} are ground—
the Split rule reduces exactly to the Split’ rule of DPLL in Section 2. To see that
it is enough to recall that in the ground case, if Lσ = L is a remainder literal of
a context unifier σ of C∨L against Λ, then L must have been unified by σ with
a variant of ¬v, which implies that L is positive. Moreover, L (respectively,

(Lσ)
sko

= L) is contradictory with Λ, in the sense of Definition 3.2, iff L ∈ Λ
(respectively, L ∈ Λ).

The Assert Rule

Assert
Λ ` Φ, C ∨ L
Λ, Lσ ` Φ, C ∨ L

if



σ is a context unifier of C against

Λ with an empty remainder,

Lσ is parameter-free and

non-contradictory with Λ,

there is no K ∈ Λ s. t. K ≥ Lσ

We say that the clause C ∨ L above is the selected clause, and L is the
selected literal of Assert.

12 More precisely, one that does not occur in the current context yet.
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As in DPLL, the Assert rule is extremely useful in reducing the non-determinism
of the calculus. When the first of its side conditions holds, the candidate model
induced by (any extension of) Λ must make Lσ valid to become a model of
Φ ∪ {C ∨ L}. The Assert rule achieves just that by adding Lσ to the con-
text. Note that since Lσ is parameter-free, its addition to the context is not
retractable. Also note that the rule does not apply if the permanent validity
of Lσ has been already established. This is the case when Λ contains a—
necessarily parameter-free—literal K such that K ≥ Lσ. The rule does not
apply also if Lσ is contradictory with Λ. In that case, however, the candidate
model is unrepairable. The Close rule, described later, will detect that and
cause the calculus to stop working on Λ ` Φ, L ∨ C.

When C = 2, that is, when the selected clause of Assert is just a unit clause
L, the empty substitution is a context unifier of C against Λ with an empty
remainder. In that case, the effect of the rule is simply to add L to the context.
For greater flexibility, the Assert rule is defined for clauses with an arbitrary
number of literals. As we will see in Section 4.3, however, for completeness
purposes it is enough to restrict its applications to unit clauses only.

In the ground case, Assert reduces exactly to Assert’ in DPLL. The reason is
that, in the ground case (i) σ is a context unifier of C against Λ with an empty
remainder iff σ is the empty substitution and Λ contains the complement of
each literal of C, (ii) Lσ is trivially parameter-free, (iii) there is no K ∈ Λ s.t.
K ≥ Lσ iff L /∈ Λ, and (iv) Lσ is not contradictory with Λ iff L /∈ Λ.

The Close Rule

Close
Λ ` Φ, C

Λ ` 2
if


Φ 6= ∅ or C 6= 2,

there is a context unifier σ of C against Λ

with an empty remainder

We say that the clause C above is the selected clause of Close, and σ is
the context unifier of Close.

The idea behind Close is that when its precondition holds there is no way to
repair the current candidate model to make it satisfy C. The replacement of
the current close set by the empty clause signals that the calculus has given
up on that candidate model. Note that, because of Resolve below, it is possible
for the calculus to generate a sequent containing an empty clause. The Close
rule recognizes such sequents and applies to them as well. To see that it is
enough to observe that, for any context Λ, the empty substitution is a context
unifier of 2 against Λ with an empty remainder.

In the ground case, the Close rule reduces to its namesake in DPLL, because
then C has a context unifier against Λ with an empty remainder iff L ∈ Λ for
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every literal L of C.

The Subsume Rule

Subsume
Λ, K ` Φ, L ∨ C
Λ, K ` Φ

if K ≥ L

We say that the clause L ∨ C above is the selected clause of Subsume.

The purpose of Subsume is the same as in DPLL: to get rid of clauses that are
valid in the current candidate model, and are guaranteed to stay so. 13 These
are exactly those clauses one of whose literals is a p-instance of a literal in
the current context. Although Subsume is not needed for completeness, it is
potentially useful in practice since it reduces the size of the current clause set.

In the ground case, the Subsume rule reduces to its namesake in DPLL because,
then, K ≥ L iff K = L.

The Resolve Rule

Resolve
Λ ` Φ, L ∨ C
Λ ` Φ, C

if


there is a context unifier σ of L

against Λ with an empty remainder

such that Cσ = C

We say that the clause L ∨ C above is the selected clause and L is the
selected literal of Resolve.

This rule is similar to Subsume in that it is not needed for completeness but
is useful to reduce the complexity of the current clause set. Since Resolve is
in a sense dual to Subsume, it would be reasonable to expect its precondition
to be simply that there is a literal K ∈ Λ such that K ≥ L. This precondi-
tion, however, is a special case of the one provided. The given precondition
makes Resolve more widely applicable, allowing for more frequent simplifica-
tions. Observe that Resolve is a special case of unit resolution (with backward
subsumption): the one in which the resolvent of a unit clause K and a clause
L ∨ C is exactly C—as opposed to a proper instance of C.

In the ground case, the Resolve rule as well reduces to its namesake in DPLL.
To see why it is enough to observe that in that case Resolve’s precondition
holds iff σ is the empty substitution and L ∈ Λ.

13 Note that, as L is parameter-free, a necessary condition for K ≥ L is that K be
parameter-free, which implies that none of its instances can made false by subse-
quent contexts.
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The Compact Rule

Compact
Λ, K, L ` Φ

Λ, K ` Φ
if K ≥ L

We say that the literal L above is the selected literal and the literal K is
the subsuming literal of Compact. 14

The Compact rule is another simplification rule that is not nedeed for com-
pleteness but is useful in practice. Its intended application is after the addition
of a literal K that is parameter-preserving more general than other literals in
the context. After this addition, all such literals become superfluous since they
can be replaced by K for all purposes. Hence Compact allows their elimination.

There is no rule in DPLL corresponding to Compact. However, it is easy to see
that Compact never applies in the ground case.

3.4 Derivation Examples

For a better idea on how the various rules of the calculus apply, we now
describe informally a couple of examples of derivations—a formal definition of
derivation will be given in the next section.

In the first example we consider a satisfiable clause set from the Bernays-
Schönfinkel class, showing how the calculus computes a model of the clause set.
In the second example we consider an unsatisfiable set whose unsatisfiability
can be proven in the calculus deterministically—that is, without applying
Split, thanks to the Assert rule.

Example 3.14 Consider the following initial sequent:

¬v ` p(x) ∨ q(x), ¬p(y) ∨ q(y) ∨ ¬p(c), ¬p(z) ∨ ¬q(z)

One rule (in fact, the only rule) that applies to this sequent is Split, with
selected clause p(x)∨ q(x). In fact, with the fresh variants ¬v1 and ¬v2 of the
context literal ¬v, the substitution

σ = {v1 7→ p(x), v2 7→ q(x)}

is a context unifier of p(x) ∨ q(x) with remainder p(x) ∨ q(x). While this con-
text unifier is not admissible (because the remainder literals share a variable),

14 The literals K and L are meant to be distinct.
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we can generate an admissible one from it by composition with the substitu-
tion {x 7→ u}, say. The new context unifier σ′ := σ{x 7→ u} has remainder
p(u)∨q(u). Since the remainder literal p(u) and its complement are both non-
contradictory with the context, we can add p(u) to the context by (the left
conclusion of) one application of Split, obtaining

¬v, p(u) ` p(x) ∨ q(x), ¬p(y) ∨ q(y) ∨ ¬p(c), ¬p(z) ∨ ¬q(z)

Note that σ′ is a context unifier of p(x)∨ q(x) against the new context as well,
and p(u) and q(u) are still remainder literals for σ′. However, Split does not
apply with selected literal p(x) anymore, because the complement of p(u) =
p(x)σ′ is now contradictory with the contex. The Split rule does apply with
selected literal q(x), but in a sense this application is useless because p(x)∨q(x)
is now satisfied by the current context, which makes every ground instance
of p(u) true. The uselessness of applying Split with selected literal q(x) is
witnessed by the fact that σ′ is a non-productive context unifier. In fact, the
literal ¬v1, the context literal variant paired with p(x) by the unifier, does not
produce ¬p(x) anymore because of the presence of p(u) in the context.

We point out that using a fresh variant p(u1) of the context literal p(u), there
are now context unifiers of the subclause ¬p(z1) of ¬p(z) ∨ ¬q(z). Hence, we
could think of applying Assert with selected clause ¬p(z)∨¬q(z) and selected
literal ¬q(z). However, that is not possible because all these unifiers either have
a non-empty remainder, like for instance the unifier {u1 7→ z}, or instantiate
¬q(z) to a non-parameter-free literal, like for instance the unifier {z 7→ u1}.

Now, using the context literal variants p(u1), ¬v1 and p(u2), the substitution

σ = {y 7→ u1, v1 7→ q(u1), u2 7→ c}

say, is an admissible contex unifier of ¬p(y) ∨ q(y) ∨ ¬p(c) with remainder
q(u1) ∨ ¬p(c). Since neither q(u1) nor its complement is contradictory with
the context, we can apply Split with selected clauses ¬p(y)∨ q(y)∨¬p(c) and
literal q(y). 15 Choosing again the left conclusion of Split, which adds q(y)σ to
the context, we then obtain

¬v, p(u), q(u1) ` p(x) ∨ q(x), ¬p(y) ∨ q(y) ∨ ¬p(c), ¬p(z) ∨ ¬q(z)

Now the Close rule applies with selected clause ¬p(z) ∨ ¬q(z). In fact, using

15 The substitution {u1 7→ y, v1 7→ q(y), u2 7→ c} is also a context unifier of ¬p(y)∨
q(y) ∨ ¬p(c), but it is not admissible because its remainder is ¬p(y) ∨ q(y) ∨ ¬p(c).
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the context literal variants p(u2) and q(u3), the substitution

σ = {z 7→ u2, u3 7→ u2}

is a context unifier of ¬p(z) ∨ ¬q(z) with an empty remainder. Let’s consider
then the right conclusion of the last Split application. With that conclusion
we get the sequent

¬v, p(u), ¬q(u1) ` p(x) ∨ q(x), ¬p(y) ∨ q(y) ∨ ¬p(c), ¬p(z) ∨ ¬q(z).

Using now the context literal variants p(u2) and ¬q(u3), the substitution

σ = {y 7→ u2, u3 7→ u2}

is a context unifier with an empty remainder of the subclause ¬p(y) ∨ q(y) of
¬p(y) ∨ q(y) ∨ ¬p(c). Moreover, ¬p(c) = ¬p(c)σ is paramenter-free and non-
contradictory with the context. Finally, there is no context literal K such that
K ≥ ¬p(c). 16 Hence Assert applies with selected clause ¬p(y) ∨ q(y) ∨ ¬p(c)
and literal ¬p(c), yielding the sequent

¬v, p(u), ¬q(u1), ¬p(c) ` p(x) ∨ q(x), ¬p(y) ∨ q(y) ∨ ¬p(c), ¬p(z) ∨ ¬q(z)

to which Subsume immediately applies with selected clause ¬p(y)∨q(y)∨¬p(c),
yielding the sequent

¬v, p(u), ¬q(u1), ¬p(c) ` p(x) ∨ q(x), ¬p(z) ∨ ¬q(z).

At this point, because of the context literal ¬p(c), we can apply Assert with
selected clause p(x) ∨ q(x), obtaining

¬v, p(u), ¬q(u1), ¬p(c), q(c) ` p(x) ∨ q(x), ¬p(z) ∨ ¬q(z).

It is easy to see that no rules apply to this sequent. For Split in particular the
reason is that every possible remainder literal is contradictory with one of the
context literals or their complements—for Assert the argument is similar.

For any signature Σ that includes the symbols of the original clause set,
the final context induces a Herbrand Σ-interpretation in which all ground

16 The literal ¬p(c) is an instance of the context literal ¬v, but it is not a p-instance
of ¬v.
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instances of p(u) except p(c) are true, and all ground instances of q(u1) ex-
cept q(c) are false. For illustration purposes, if Σ contains only the symbols of
the original clause set, the induced interpretation is simply {q(c)}. If Σ also
contains a functions symbols f of arity 1, say, the induced interpretation is
{q(c)} ∪ {p(fn(c)) | n > 0}. We leave it to the reader to verify that these
interpretations are indeed a model of the original clause set.

Example 3.15 Now consider the following initial sequent, where we use the
usual mathematical notation for greater clarity:

¬v `
¬(x ≥ y) ∨ ¬(y ≥ z) ∨ (x ≥ z), (x ≥ 0) ∨ (0 ≥ x), |x| ≥ 0, 0 ≥ −|x|,

¬(x ≥ 0) ∨ (|x| ≥ x), ¬(0 ≥ x) ∨ (|x| ≥ x), ¬(|c| ≥ c) ∨ ¬(|c| ≥ −|c|)

Recalling an earlier observation on the applicability of Assert to unit clauses,
we can immediately add each unit clause in the clause set to the context by
means of Assert, and then remove it from the set by means of Subsume. This
results in the sequent:

¬v, |x| ≥ 0, 0 ≥ −|x| `
¬(x ≥ y) ∨ ¬(y ≥ z) ∨ (x ≥ z), (x ≥ 0) ∨ (0 ≥ x),

¬(x ≥ 0) ∨ (|x| ≥ x), ¬(0 ≥ x) ∨ (|x| ≥ x),

¬(|c| ≥ c) ∨ ¬(|c| ≥ −|c|)

Now consider the clause ¬(x ≥ y) ∨ ¬(y ≥ z) ∨ (x ≥ z) and its subclause
¬(x ≥ y)∨¬(y ≥ z). With the context literal variants |x1| ≥ 0 and 0 ≥ −|x2|,
the substitution

σ = {x 7→ |x1|, y 7→ 0, z 7→ −|x2|}
is an admissible context unifier of ¬(x ≥ y) ∨ ¬(y ≥ z) with an empty re-
mainder. Moreover, the literal |x1| ≥ −|x2| = (x ≥ z)σ is parameter-free
and non-contradictory with Λ. Finally, there is no context literal K such that
K ≥ (|x1| ≥ −|x2|). Hence, we can add |x1| ≥ −|x2| to the context by one
application of Assert.

With this new literal we can then simplify ¬(|c| ≥ c) ∨ ¬(|c| ≥ −|c|) to
¬(|c| ≥ c) with Resolve, obtaining

¬v, |x| ≥ 0, 0 ≥ −|x|,

|x1| ≥ −|x2|
`
¬(x ≥ y) ∨ ¬(y ≥ z) ∨ (x ≥ z), (x ≥ 0) ∨ (0 ≥ x),

¬(x ≥ 0) ∨ (|x| ≥ x), ¬(0 ≥ x) ∨ (|x| ≥ x),

¬(|c| ≥ c)
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We can then move ¬(|c| ≥ c) to the context by means of Assert and Subsume,
obtaining

¬v, |x| ≥ 0, 0 ≥ −|x|,

|x1| ≥ −|x2|, ¬(|c| ≥ c)
`
¬(x ≥ y) ∨ ¬(y ≥ z) ∨ (x ≥ z), (x ≥ 0) ∨ (0 ≥ x),

¬(x ≥ 0) ∨ (|x| ≥ x), ¬(0 ≥ x) ∨ (|x| ≥ x),

With ¬(|c| ≥ c) in the context, we can apply Assert with selected clause
¬(x ≥ 0) ∨ (|x| ≥ x) and substitution σ1 = {x 7→ c}, adding ¬(|c| ≥ 0) to the
context. Similarly, we can apply Assert with selected clause ¬(0 ≥ x)∨(|x| ≥ x)
and add ¬(0 ≥ |c|), obtaining:

. . . , ¬(|c| ≥ 0), ¬(0 ≥ |c|) ` . . . , (x ≥ 0) ∨ (0 ≥ x), . . .

With ¬(|c| ≥ 0) in the context, the substitution σ2 = {x 7→ |c|} is a context
unifier of (x ≥ 0) with an empty remainder. Note that we cannot apply Resolve
with selected clause (x ≥ 0) ∨ (0 ≥ x) and substitution σ2 because (0 ≥
x)σ 6= (0 ≥ x). Similarly, we cannot apply Assert either with selected clause
(x ≥ 0) ∨ (0 ≥ x) and substitution σ2 because (0 ≥ x)σ is contradictory with
the context literal ¬(0 ≥ |c|). However, we can apply Close with selected clause
(x ≥ 0) ∨ (0 ≥ x) and substitution σ2, obtaining the sequent

. . . ` 2 .

This is because, thanks to the context literals ¬(|c| ≥ 0) and ¬(0 ≥ |c|), σ2 is
a context unifier of (x ≥ 0) ∨ (0 ≥ x) with an empty remainder.

Note that other sequences of rule applications are possible for the given clause
set. However, as we will prove in Section 4, since the described one contained
no applications of Split, all those other sequences too are guaranteed to lead
to an application of Close. But then, as we will also prove in Section 4, we can
conclude that the original clause set is unsatisfiable. ut

3.5 Derivations

We now provide a formal definition of derivation in the Model Evolution cal-
culus. As customary in sequent-style calculi, derivations in ME are defined in
terms of derivation trees where each node corresponds to a particular appli-
cation of a derivation rule, and each of the node’s children corresponds to one
of the conclusions of the rule.
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Definition 3.16 (Derivation Tree) A derivation tree (in ME) is a labeled
tree inductively defined as follows:

(1) a one-node tree is a derivation tree iff its root is labeled with a sequent of
the form Λ ` Φ, where Λ is a context and Φ is a clause set;

(2) A tree T′ is a derivation tree iff it is obtained from a derivation tree T
by adding to a leaf node N in T new children nodes N1, . . . , Nm so that
the sequents labeling N1, . . . , Nm can be derived by applying a rule of the
calculus to the sequent labeling N . In this case, we say that T′ is derived
from T.

We say that a derivation tree T is a derivation tree of a clause set Φ iff its
root node tree is labeled with ¬v ` Φ.

Let us call a non-leaf node in a derivation tree a Split node if the sequents
labelling its children are obtained by applying the Split rule to the sequent
labeling the node. (Similarly for nodes to which other rules are applied.) Ob-
serve that every non-leaf node in a derivation tree has only one child unless it
is a Split node, in which case it has two children. When it is convenient and it
does not cause confusion, we will identify the nodes of a derivation tree with
their labels.

Definition 3.17 (Open, Closed) A branch in a derivation tree is closed if
its leaf is labeled by a sequent of the form Λ ` 2; otherwise, the branch is
open. A derivation tree is closed if each of its branches is closed, and it is
open otherwise.

We say that a derivation tree (of a clause set Φ) is a refutation tree (of Φ) iff
it is closed.

In the rest of the paper, the letters i and n will denote finite ordinal numbers,
whereas the letter κ will denote an ordinal smaller than or equal to the first
infinite ordinal. For every κ then, we will denote a possibly infinite sequence
a0, a1, a2, . . . of κ elements by (ai)i<κ.

Definition 3.18 (Derivation) A derivation (in ME) is a possibly infinite
sequence of derivation trees (Ti)i<κ, such that for all i with 0 < i < κ, Ti is
derived from Ti−1.

We say that a derivation D = (Ti)i<κ is a derivation of a clause set Φ iff T0

is a one-node tree with label {¬v} ` Φ. We say that D is a refutation of Φ
iff D is finite and ends with a refutation tree of Φ.

We show in the next sections that the Model Evolution calculus is sound and
complete in the following sense: for all sets Φ0 of Σ-clauses with no parameters,
Φ0 is unsatisfiable iff Φ0 has a refutation in the calculus.
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To prove the calculus’ completeness we will introduce the notion of an ex-
hausted branch, a derivation tree branch that cannot be extended any further
by the calculus. A by-product of the completeness proof will be to show that
the interpretation induced by the context in the leaf of an open exhausted
branch is a model of the clause set in the branch’s root. This means that
whenever a derivation of a clause set Φ0 produces a tree with an open ex-
austed branch, it is possible not only to state that Φ0 is satisfiable, but also
to provide (a finite description) of a model of Φ0.

4 Correctness of the Calculus

In this section, we prove the soundness and completeness of the Model Evo-
lution calculus.

4.1 Soundness

To prove that the calculus is sound we first prove that each of its derivation
rules preserves a particular notion of satisfiability that we call a-satisfiability,
after (Baumgartner, 2000).

Let us fix a constant a from the signature Σsko\Σ and consider the substitution
α := {v 7→ a | v ∈ V } mapping every parameter to a. 17 Given a literal L, we
denote by La the literal Lα. Note that La is ground if, and only if, L is
variable-free. Similarly, given a context Λ, we denote by Λa the set of unit
clauses obtained from Λ by removing the pseudo-literal ¬v, replacing each
literal L of Λ with La, and considering it as a unit clause. Finally, if σ is a
substitution, we denote by σa the composed substitution σα. We point out
for later that for all literals L and substitutions σ such that (Par(L))σ ⊆ V
(which includes all parameter-preserving substitutions), Lσa = Laσa.

We say that a sequent Λ ` Φ is a-(un)satisfiable iff the clause set Λa ∪ Φ is
(un)satisfiable in the standard sense—that is, it has (no) Herbrand models.

Lemma 4.1 For each rule of the ME calculus, if the premise of the rule is
a-satisfiable, then one of its conclusions is a-satisfiable as well.

Proof. We prove the claim only for the rules Split, Assert, Resolve, and Close.
For the other rules the claim holds trivially.

17 Strictly speaking, α is not a substitution in the standard sense because Dom(α)
is not finite. But this will cause no problems here.
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Split) The premise of Split has the form Λ ` Ψ, while its conclusions have

respectively the form Λ, K ` Ψ and Λ, K
sko ` Ψ. Suppose that Λ ` Ψ is a-

satisfiable. Now let x := (x1, . . . , xn) be an enumeration of all the variables of
K and note that K and Ka have exactly the same variables. Then consider the
unit clause Ka (or, more explicitly, ∀xKa) and its negation ¬∀xKa. Clearly,
one of the two sets

S1 := Λa ∪ {Ka} ∪ Ψ and S2 := Λa ∪ {¬∀xKa} ∪ Ψ

must be satisfiable. If S1 is satisfiable, we have immediately that Λ, K ` Ψ is

a-satisfiable. If S2 is satisfiable, then its Skolemized form Λa ∪ {(Ka)
sko} ∪ Ψ

is also satisfiable. Since (Ka)
sko

= (K
sko

)a, as one can easily see, we then have

that Λ, K
sko ` Ψ is a-satisfiable.

Assert) The premise of Assert has the form Λ ` Φ, L1 ∨ · · · ∨ Ln ∨ L, while
its conclusion has the form Λ, Lσ ` Φ, L1 ∨ · · · ∨ Ln ∨ L, where Lσ is
parameter-free and not contradictory with Λ, n ≥ 0, and σ is a context uni-
fier of L1 ∨ · · · ∨ Ln against Λ with an empty remainder. This means that
there are fresh K1, . . . , Kn ∈' Λ such that σ is a simultaneous unifier of
{{K1, L1}, . . . , {Kn, Ln}} and (Par(Ki))σ ⊆ V for all i = 1, . . . , n.

Suppose Λ ` Φ, L1 ∨ · · · ∨ Ln ∨ L is a-satisfiable, that is, Λa ∪ Φ ∪
{L1 ∨ · · · ∨ Ln ∨ L} is satisfiable. Observing that (Par(Ki))σ ⊆ V and Li
is parameter-free for each i, it is easy to see that σa is a simultaneous unifier
of {{Ka

1 , L1}, . . . , {Ka
n, Ln}}.

Since Ka
i ∈' Λa for each i, it follows from the soundness of resolution that

Λa ∪ Φ ∪ {L1 ∨ · · · ∨ Ln ∨ L, Lσa} is satisfiable. Noting that Lσa = (Lσ)a,
we can then conclude that Λ, Lσ ` Φ, L1 ∨ · · · ∨ Ln ∨ L is a-satisfiable.

Resolve) The premise of Resolve has the form Λ ` Φ, L∨C, while its conclusion
has the form Λ ` Φ, C, and there is a most general unifier σ of {K,L} for
some K ∈' Λ such that (i) (Par(K))σ ⊆ V , and (ii) Cσ = C. Suppose
Λ ` Φ, L ∨ C is a-satisfiable, which means that Λa ∪ Φ ∪ {L ∨ C} is
satisfiable. It is easy to see that because of point (i) above and the fact that
L is parameter-free, σa is a unifier of {Ka, L}. Observing that Ka ∈' Λa, it
follows by the soundness of standard resolution that Λa ∪ Φ ∪ {L∨C, Cσa}
is also satisfiable. By point (ii) above and the fact that C is parameter-free,
we have that Cσa = (Cσ)a = Ca = C. But this entails that Λa ∪ Φ ∪ {C} is
satisfiable, and so Λ ` Φ, C is a-satisfiable.

Close) The premise of Close has the form Λ ` Φ, C, while its conclusion
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has the form Λ ` 2, and there is a context unifier σ of C against Λ with an
empty remainder. As Λ ` 2 is a-unsatisfiable, we must show that Λ ` Φ, C is
a-unsatisfiable as well. We do that by proving that Λa ∪ {C} is unsatisfiable.

Let C = L1 ∨ · · · ∨ Ln for some n ≥ 0. Since σ is a context unifier σ of
C against Λ with an empty remainder, we know that there are fresh vari-
ants K1, . . . , Kn ∈' Λ such that σ is a most general simultaneous unifier of
{K1, L1}, . . . , {Kn, Ln}, and (Par(Ki))σ ⊆ V for all i = 1, . . . , n. Let us fix
the literals K1, . . . , Kn.

Clearly, σa is a simultaneous unifier of {K1, L1}, . . . , {Kn, Ln}. By an earlier
observation we know that Kiσ

a = Ka
i σ

a for all i = 1, . . . , n. It follows that σa

is a simultaneous unifier of

{Ka
1 , L1}, {Ka

2 , L2}, . . . , {Ka
n, Ln}.

This entails that {Ka
1 , . . . , K

a
n, L1∨· · ·∨Ln} is unsatisfiable. From the fact that

Ka
1 , . . . , K

a
n ∈' Λa it then immediately follows that Λa ∪ {C} is unsatisfiable.

ut

Proposition 4.2 (Soundness) For all sets Φ0 of parameter-free Σ-clauses,
if Φ0 has a refutation tree, then Φ0 is unsatisfiable.

Proof. Let T0 be a refutation tree of Φ0. We prove below by structural induc-
tion that the root of any subtree of a refutation tree is a-unsatisfiable. This
will entail in particular that ¬v ` Φ0, the root of T0, is a-unsatisfiable. The
claim will then follow from the immediate fact that the sequent ¬v ` Φ0 is
a-unsatisfiable iff Φ0 is unsatisfiable.

Let T be a subtree of a refutation tree and let N be its root. If T is a one-
node tree, N can only have the form Λ ` 2, which is trivially a-unsatisfiable.
If T has more than one node, we can assume by induction that all the chil-
dren nodes of N are a-unsatisfiable. But then we can conclude that N is
a-unsatisfiable as well by the contrapositive of Lemma 4.1. ut

4.2 Fairness

As customary, we will prove the completeness of the calculus with respect
to fair derivations. The specific notion of fairness that we adopt is defined
formally in the following. For that, it will be convenient to describe a tree T
as the pair (N,E), where N is the set of the nodes of T and E is the set of
the edges of T.

Each derivation D in the Model Evolution calculus determines a limit tree
with respect to all the derivation trees in D.
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Definition 4.3 (Limit Tree) Let D = (Ti)i<κ be a derivation, where Ti =
(Ni,Ei) for all i < κ. We say that

T := (
⋃
i<κ

Ni,
⋃
i<κ

Ei)

is the limit tree of D.

It is easy to show that a limit tree of a derivation D is indeed a tree. But note
that it will not be a derivation tree unless D is finite.

Definition 4.4 (Persistency) Let T be the limit tree of some derivation,
and let B = (Ni)i<κ be a branch in T with κ nodes. Let Λi ` Φi be the sequent
labeling node Ni, for all i < κ. We define the following sets of persistent
context literals and persistent clauses, respectively:

ΛB :=
⋃
i<κ

⋂
i≤j<κ

Λj ΦB :=
⋃
i<κ

⋂
i≤j<κ

Φj

In words, a context literal is persistent in the considered branch B iff it appears
in the context of some node and in the context of all the node’s descendants
(and similarly for persistent clauses).

Where Σ is the signature of the first clause set of a derivation, we will also
consider the set ΛΣ

B of all the Σ-literals in ΛB (which excludes any literal with
Skolem constants). Although, strictly speaking, ΛB and ΛΣ

B are not contexts
because they may be infinite, for the purposes of the completeness proof we can
treat them as such. We note that all the definitions introduced in Section 3.1
can be applied without change to ΛB and ΛΣ

B as well.

Fair derivations in the ME calculus are defined in terms of exhausted branches.

Definition 4.5 (Exhausted branch) Let T be a limit tree, and let B =
(Ni)i<κ be a branch in T with κ nodes. For all i < κ, let Λi ` Φi be the
sequent labeling node Ni. The branch B is exhausted iff for all i < κ, all of
the following hold:

(i) For all C ∈ ΦB, if Split is applicable to Λi ` Φi with selected clause C and
productive context unifier σ such that K ∈' ΛΣ

B for every context literal
K of σ, then there is a remainder literal L of σ and a j with i ≤ j < κ
such that Λj produces L but does not produce L.

(ii) For all unit clauses L ∈ ΦB, if Assert is applicable to Λi ` Φi with selected
clause L, selected literal L and empty context unifier, then there is a j
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with i ≤ j < κ such that for any literal K with L ≥ K, Λj produces K
but does not produce K.

(iii) For all C ∈ ΦB, Close is not applicable to Λi ` Φi with selected clause
C and a context unifier σ such that K ∈' ΛB for every context literal K
of σ.

(iv) Φi 6= {2}.

It is worth noticing that Point (i) in Definition 4.5 does not require that Split
be eventually applied with selected clause C and context unifier σ, for the
branch to be exhausted. It only requires that the intended effect of applying
Split with selected clause C and context unifier σ be achieved, namely that
some literal L of Cσ is permanently produced and L is not produced. Only
with the latter property it is guaranteed that the interpretation induced by the
limit context assigns true to every ground Σ-instance of L and hence to every
ground Σ-instance of Cσ. A similar observation can be made about Point (ii)
and the effect of applying Assert with selected unit clause L, namely that
all Σ-instances of L and no Σ-instance of L is produced. To make Point (ii)
operational, Lemma 8.6 below can be used to provide a sufficient condition.
According to that lemma it is enough to add L to a context to achieve the
desired effect.

Furthermore, as stated in Point (i) in Definition 4.5, concerning the context
unifier σ mentioned there it suffices to consider only a persistent clause C
and as context literals of σ only persistent context Σ-literals (and similarly
in Point (iii) in Definition 4.5). That only Σ-literals from ΛB need to be
considered is justified, intuitively, by the fact that in order to determine the
satisfiability of a input clause, which is built over the signature Σ, it is enough
to find a Herbrand Σ-model for it. 18 That only persistent literals from ΛB

need to be considered results in an important consequence for the design of
proof procedures: for completeness purposes, neither clauses nor contexts need
to be stored over time; instead, it suffices to maintain a current context and
a current clause set—in addition to backtracking information for recovering
from Split applications that have led to a closed branch. See (Baumgartner
et al., 2006a) for a proof procedure along these lines.

Definition 4.6 (Fairness) A limit tree of a derivation is fair iff it is a refu-
tation tree or it has an exhausted branch. A derivation is fair iff its limit tree
is fair.

We point out that fair derivations as defined above do exist and are computable
for any set of (parameter-free) Σ-clauses. A proof of this fact can be given by
adapting a technique used in (Baumgartner, 2000) to show the computability
of fair derivations in FDPLL. Moreover, and similarly to FDPLL, fair deriva-

18 Notice, however, that Close cannot be restricted to work with Σ-literals from the
context only.
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tions need not be searched. As we will see, the calculus is proof convergent,
that is, if a set Φ of Σ-clauses is unsatisfiable, then every fair derivation of Φ
is a refutation.

4.3 Completeness

Our proof that the Model Evolution calculus is complete is based on showing
that the set ΛΣ

B of persistent context Σ-literals along an exhausted branch B
in a limit tree denotes a model of the clause set at the root of the tree. We
provide below only a sketch of the completeness proof by proving just the main
results. A complete proof of all the auxiliary results on properties of contexts
and derivation rules stated here can be found in the appendix.

4.3.1 Properties of Contexts

We start with some general properties of contexts that we will use in the
following.

Lemma 4.7 Let Λ be a non-contradictory context. Then, for any literal L, Λ
produces L or Λ produces L (or both).

This lemma is needed in the proof of the following proposition.

Proposition 4.8 Let Λ be a non-contradictory context and L a ground literal.
If IΛ satisfies L then Λ produces L.

Observe that the converse of this proposition does not hold in general. This can
be seen by considering the context {¬v, P (a, u),¬P (v, b)}. While the context
produces both P (a, b) and ¬P (a, b), its induced interpretation satisfies only
P (a, b). The converse of Proposition 4.8 does hold for positive literals however.

Proof. If L is a positive literal then the claim follows trivially from Defini-
tion 3.8. Hence suppose that L is a negative literal. It is impossible that Λ
produces L, which is a positive literal, because then again by Definition 3.8
the interpretation IΛ would satisfy L, and thus not satisfy L. Now, since Λ
does not produce L, it follows by Lemma 4.7 that Λ produces L. ut

4.3.2 Properties of Inference Rules

The following lemmas provide sufficient conditions for the applicability of the
main rules of the calculus to a given context. We will refer to these conditions
to prove the completeness of the calculus.
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We need to characterize conditions under which Split is applicable. Their proof
will be facilitated by the next two general lemmas. The first one shows how
unification can be used to identify clause instances that are false in the inter-
pretation induced by the current context.

Lemma 4.9 (Lifting Lemma) Let Λ be a non-contradictory context. Let
C = L1 ∨ · · · ∨ Ln be a Σ-clause and Cγ a ground Σ-instance. If Λ pro-
duces L1γ,. . . ,Lnγ, then there are fresh variants K1, . . . , Kn ∈' ΛΣ and a
substitution σ such that

(1) σ is a most general simultaneous unifier of {K1, L1}, . . . , {Kn, Ln},
(2) for all i = 1, . . . , n, Li & Liσ & Liγ,
(3) for all i = 1, . . . , n, Ki produces Liσ in Λ.

In Section 3 we mentioned that the calculus does not need to search for ad-
missible context unifiers, and that any context unifier can be composed with
a renaming substitution, obtained deterministically, such that the resulting
context unifier is admissible. This fact is expressed by the following lemma.

Lemma 4.10 (Existence of Admissible Context Unifiers)
Let Λ be a context, C a clause and σ a context unifier of C against Λ. Then,
there is a renaming ρ such that σ′ := σρ is an admissible context unifier of C
against Λ with the same context literals as σ.

It should be mentioned that the purpose of this lemma is just to show the
existence of an admissible context unifier based on a possibly non-admissible
context unifier. A realistic implementation would compute a clever renam-
ing, one that tries to maximize the parameter-free literals in the resulting
remainder. 19 For completeness purposes, however, any renaming that yields
an admissible context unifier will do, as it will be clear from the proof of
Proposition 4.16 below.

Now we can turn to the lemma stating conditions under which the Split rule is
applicable. Roughly, Split is applicable if its selected clause admits a context
unifier, it does not overlap with Assert, and Close is not applicable with the
selected clause.

Lemma 4.11 (Split Applicability) Let Λ ` Ψ, C be a sequent with a non-
contradictory context Λ, where C contains at least two literals. If all context
unifiers of C against Λ have a non-empty remainder, and σ is an admissible
context unifier of C against Λ such that Λ produces L for every remainder
literal L of σ, then Split is applicable to Λ ` Ψ, C with selected clause C and
context unifier σ.

19 See (Fuchs, 2004) for a discussion of how to compute such a renaming.
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The next lemma provides sufficient conditions for the applicabity of Assert to
unit clauses, which is enough for completeness.

Lemma 4.12 (Assert Applicability) Let Λ ` Ψ, L be a sequent with a
non-contradictory context Λ. If all context unifiers of L against Λ have a non-
empty remainder and there is an instance Lσ of L such that Λ produces Lσ,
then Assert is applicable to Λ ` Ψ, L with selected clause L, selected literal L
and the empty substitution as context unifier.

4.3.3 Main Result

In this section, let Φ be a set of parameter-free Σ-clauses and assume that D is
a fair derivation of Φ that is not a refutation. Observe that D’s limit tree must
have at least one exhausted branch. We denote this branch by B = (Ni)i<κ.
Then, by Λi ` Φi, we will always mean the sequent labeling the node Ni in
B, for all i < κ. (As a consequence, we will also have that Λ0 = {¬v} and
Φ0 = Φ.)

Quite often we will appeal to the following compactness property of ΛB. By
definition, L ∈ ΛB holds iff there is an i < κ such that L ∈ Λj for all j ≥ i
with j < κ.

Similarly, if L ∈' ΛB (meaning, by definition, that L ' K for some literal
K ∈ ΛB), then there is an i < κ such that K ∈ Λj for all j ≥ i with j < κ,
which entails that L ∈' Λj, for all j ≥ i with j < κ. More generally then, if
L1, . . . , Ln ∈ ΛB (or L1, . . . , Ln ∈' ΛB) for some n ≥ 0, then there is an i < κ
such that L1, . . . , Ln ∈ Λj (or L1, . . . , Ln ∈' Λj) for all j ≥ i with j < κ. 20

Being non-contradictory is a fundamental property of the contexts manipu-
lated by the calculus. Essentially, because the derivation rules can produce
only non-contradictory contexts from non-contradictory contexts we obtain
the following result:

Lemma 4.13 ΛB is not contradictory.

The following lemma reduces productivity in the limit for the given branch to
productivity in contexts within the branch.

Lemma 4.14 Let K,L be two literals with K ∈ ΛB. If K produces L in ΛB,
then there is an i such that for all j ≥ i with j < κ, K ∈ Λj and K produces
L in Λj.

20 It is easy to see that this index i can be determined by taking the maximum of
the i-indices associated individually to the literals L1, . . . , Ln, as just described.
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Lemma 4.15 (Close Applicability) Let C ∈ ΦB and i < κ such that Close
is applicable to Λi ` Φi with selected clause C. Then, for some j with i ≤ j <
κ, Close is applicable to Λj ` Φj with selected clause C and a context unifier
σ such that K ∈' ΛB for each context literal K of σ.

The following proposition is fundamental as it states that that the calculus
computes a model, in the limit, for any persistent clause set not containing
the empty clause.

Proposition 4.16 If 2 /∈ ΦB, then IΛB
is a model of ΦB.

Proof. Suppose ad absurdum that ΦB does not contain the empty clause, but
IΛB

is not a model of ΦB. This means that there is a ground Σ-instance Cγ
of a clause C = L1 ∨ · · · ∨Ln with n ≥ 1 from ΦB that is not satisfied by IΛB

.

Since Cγ is not satisfied by IΛB
, the literals L1γ, . . . , Lnγ are all satisfied by

IΛB
. By Lemma 4.13, ΛB is non-contradictory, and so by Proposition 4.8 it

follows that ΛB produces L1γ,. . . ,Lnγ.

We distinguish two complementary cases below, depending on whether n = 1
or n > 1, and show that they both lead to a contradiction. In both cases we
need the fact that Close is not applicable to Λi ` Φi with selected clause C,
for any i < κ. This follows immediately from Lemma 4.15: for, if Close were
applicable to Λi with selected clause C, for some i < κ, then Close would be
also applicable to Λj, for some j ≥ i with j ≤ κ and such that K ∈' ΛB for
each context literal K of its context unifier. This, however, would contradict
Definition 4.5-(iii).

(n = 1) In this case, C consists of the single literal L1. For ΛB to produce L1γ
it must contain a literal K that produces L1γ in ΛB. By Lemma 4.14 then
there is an i such that

for all j ≥ i with j < κ, K ∈ Λj and K produces L1γ in Λj. (1)

Since L1 is a (unit) clause from ΦB, there is a i′ such that L1 ∈ Φj′ for all
j′ ≥ i′. Without loss of generality assume that i ≥ i′ (otherwise i′ can be used
instead of i in the sequel).

As shown above, Close is in particular not applicable to Λi ` Φi with selected
clause L1. Since L1 ∈ Φi, all context unifiers of L1 against Λi have a non-
empty remainder. Together with (1), this implies by Lemma 4.12 that Assert
is applicable to Λi ` Φi with selected clause L1, selected literal L1 and empty
context unifier.

According to Definition 4.5-(ii) then, there is a j ≥ i with j < κ such that
for any literal L with L1 ≥ L, Λj produces L but does not produce L. Recall
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that clauses in sequents are parameter-free, which implies that L1 ≥ L1γ. But
then, taking L = L1γ we have a contradiction with assertion (1) above which
implies that Λj produces L1γ.

(n > 1) By the Lifting Lemma (Lemma 4.9), there are fresh p-variants
K1, . . . , Kn ∈' ΛΣ

B and a substitution σ such that

(1) σ is a most general simultaneous unifier of {K1, L1}, . . . , {Kn, Ln},
(2) for all k = 1, . . . , n, Lk & Lkσ & Lkγ,
(3) for all k = 1, . . . , n, Kk produces Lkσ in ΛB.

By Definition 3.9, σ is a productive context unifier of C against ΛB.

By Lemma 4.10, an admissible context unifier of C against ΛB can be obtained
as σ′ = σρ, for some renaming ρthat has the same context literals K1, . . . , Kn

as σ.

Let k ∈ {1, . . . , n} and observe that a literal K produces a literal L in a context
Λ iff K produces a variant of L in Λ. From the fact that Kk produces Lkσ in
ΛB, we have that Kk produces Lkσ

′ in ΛB as well. By applying Lemma 4.14 to
every Kk and Lkσ

′ individually (for k = 1, . . . , n), and taking the maximum
of the indices i mentioned in the lemma’s statement, we conclude that there
is an i such that

for all j ≥ i with j < κ, Kk ∈' ΛΣ
j and Kk produces Lkσ

′ in Λj. (2)

By assumption, C is a clause of ΦB. Hence, there is a i′ such that C ∈ Φj′ for
all j′ ≥ i′. Without loss of generality suppose that i ≥ i′ (otherwise i′ can be
used instead of i in the sequel).

As shown above, Close is in particular not applicable to Λi ` Φi with selected
clause C. Therefore, all context unifiers of C against Λi must have a non-empty
remainder.

By (2) and the generality of k we have that Kk ∈' ΛΣ
i produces Lkσ

′ in Λi for
all k = 1, . . . , n, and so, in particular, Λi produces all remainder literals of σ′.
By Lemma 4.11 then, Split is applicable to Λi ` Φi with selected clause C and
productive context unifier σ′. Recall that each literal Kk has a p-variant in
ΛΣ

B, and by (2) it has one in Λi as well. Because of Definition 4.5-(i), there is a
remainder literal L of σ′ and a j ≥ i such that Λj produces L but Λj does not
produce L. However, this contradicts conclusion (2) above which also entails
that ΛΣ

j produces L. ut

The completeness of the calculus is a consequence of Proposition 4.16. We
state it here in its contrapositive form to underline the model computation
abilities of ME.
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Theorem 4.17 (Completeness) Let Φ be a parameter-free Σ-clause set,
and let D be a fair derivation of Φ with limit tree T. If T is not a refu-
tation tree, then Φ is satisfiable; more specifically, for every exhausted branch
B of T, IΛB

is a model of Φ.

Let > be the universally true clause. For every clause C ∈ Φ, we define
C0 := C, and for all i > 0

Ci :=



D if Ci−1 is of the form L ∨D and Resolve is applied
with selected clause Ci−1 and selected literal L to
Λi−1 ` Φi−1 to obtain Λi ` Φi

> if Ci−1 is of the form L ∨D and Subsume is
applied with selected clause Ci−1 and selected
literal L to Λi−1 ` Φi−1 to obtain Λi ` Φi

Ci−1 otherwise

Observe that for all i ≥ 0, {Ci | C ∈ Φ} = Φi ∪ {>}.

Proof. Let C be any clause in Φ and B an exhausted branch of T.

It is enough to show that IΛB
is a model of C. Now, it is easy to see that there

is a smallest j such that Ci = Ci−1 for all i > j with i < κ, which means that
Cj is either > or a persistent clause of B. Let us fix that j. We show below
by induction on i that IΛB

is a model of Ci for all i ≤ j, from which it will
immediately follow that IΛB

is a model of C = C0.

(i = j) If Ci is >, IΛB
is trivially a model of Ci. Hence assume that Ci is

a persistent clause of B, that is, Ci ∈ ΦB. By Proposition 4.16, it is enough
to show that ΦB does not contain the empty clause. Assume by contradiction
that it does, i.e., that ΦB = Φ′ ∪ {2} for some clause set Φ′.

That ΦB contains the empty clause entails trivially that Φk contains the empty
clause, for some k ≥ 0 with k < κ. That is, there must be a k such that Λk ` Φk

has the form Λk ` Φ′k,2. That Φ′k = ∅ holds is impossible by Definition 4.5-
(iv). Hence suppose that Φ′k 6= ∅. But then, since the empty substitution is
certainly a context unifier of 2 against Λk with an empty remainder, Close
is applicable to Λk ` Φ′k,2 with selected clause 2, which is impossible by
Definition 4.5-(iii). It follows that IΛB

is a model of Cj.

(i < j) Assume by induction hypothesis that IΛB
is a model of Ci+1, and

consider the following three cases, depending on the definition of Ci+1.

(i) If Ci = Ci+1, we can conclude immediately that IΛB
is a model of Ci.

(ii) If Ci is of the form L∨D and Resolve is applied with selected literal L to
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Λi ` Φi to obtain Λi+1 ` Φi+1, then Ci+1 = D. It follows immediately that
IΛB

is a model of Ci.

(iii) If Ci is of the form L ∨ D and Subsume is applied with selected clause
Ci to Λi ` Φi to obtain Λi+1 ` Φi+1, then Ci+1 = >. By the definition
of Subsume, there is a K ∈ Λi such that K ≥ L. By Lemma 8.15, there is
a K ′ ∈ ΛB such that K ′ ≥ K. It follows that there is a K ′ ∈ ΛB such that
K ′ ≥ L.

Recalling that C ∈ Φ is a parameter-free Σ-clause and that, by definition, Ci

is a sub-clause of C, we have that Ci is a parameter-free Σ-clause and that L
is a parameter-free Σ-literal. From the fact that K ′ ≥ L, it follows that K ′ is
also parameter-free and that K ′ ≥ Lγ, for any grounding substitution γ. Let
Lγ be any such ground Σ-instance. Now, since K ′ ∈ ΛB and K ′ ≥ Lγ, we
have by Lemma 8.6 that ΛB produces Lγ but does not produce Lγ. It follows
by definition of IΛB

that IΛB
satisfies Lγ. Because Lγ was an arbitrary ground

Σ-instance of L, we can deduce that IΛB
is a model of L, and so of Ci. ut

When the branch B in Theorem 4.17 is finite, ΛB coincides with the context
Λn, say, in B’s leaf. From a model computation perspective, this is a crucial
point because it means that a model of the original clause set—or rather, a
finite representation of it, Λn—is readily available at the end of the derivation;
it does not have to be computed from the branch, as in other model generation
calculi.

The calculus is proof confluent (Bibel, 1982): any derivation of an unsatisfiable
clause set extends to a refutation. In fact, because of the strong completeness
result in Theorem 4.17, the calculus satisfies an even stronger property, which
we refer to as proof convergence.

Corollary 4.18 (Proof Convergence) Let Φ be a a parameter-free clause
set over the signature Σ. If Φ is unsatisfiable, then every fair derivation of Φ
is a refutation.

In practical terms, the above corollary implies that as long as a derivation
strategy guarantees fairness, the order of application of the rules of the calculus
is irrelevant for proving an input clause set unsatisfiable, giving to the ME

calculus the same kind of flexibility enjoyed by the DPLL calculus at the
propositional level.
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5 Implementation

At the theoretical level, the development of the ME calculus was motivated
by the desire to close an existing gap in the theorem proving landscape and
provide a proper lifting to first-order logic of a popular refutation method for
propositional logic, DPLL. At a practical level, the calculus was also motivated
by the conjecture that the very successful improvements developed by the
SAT community for DPLL could be lifted to a suitable first-order version of
it, and prove themselves similarly effective. To verify such a conjecture we
have devised a proof procedure for the ME calculus and turned it into an
implementation, the Darwin theorem prover. 21

We have evaluated Darwin experimentally over the TPTP problem library (Sut-
cliffe and Suttner, 1998), comparing it with state-of-the-art theorem provers
based on other calculi for first-order logic. Our experiments have shown that
the ME calculus lends itself to competitive implementations for first-order
logic without equality. In particular, Darwin is currently very competitive for
input problems with a large percentage of non-Horn clauses. Furthermore, it
is the best prover for function-free clause sets, which correspond to problems
belonging to Bernay-Schönfikel class, for which Darwin is in fact a decision
procedure.

In this section we describe the main aspects of Darwin’s proof procedure and
implementation. For a more detailed account of Darwin’s general architecture,
proof procedure, heuristics, and implementation details, as well as a detailed
experimental evaluation, we refer the reader to (Baumgartner et al., 2006a).

Iterative Deepening Proof Procedure

Similarly to the DPLL procedure, Darwin’s proof procedure can be seen as
exploring in a depth-first fashion the limit tree of a derivation in the calculus.
Since the ME calculus is refutationally complete only for fair derivations, the
proof procedure must make sure it gives rise only to fair derivations. This
is achieved by performing a sort of iterative deepening search, however not
on the depth of the search tree but of the term depth of certain literals, a
complexity measure based on the depth of a term’s tree representation.

Specifically, at any moment Darwin maintains a current context and clause
set, corresponding to a node of the derivation tree, and a current set of can-
didate literals, literals that can be added to the context by an Assert or Split
application. The proof procedure chooses for addition to the context only

21 This latter work was in collaboration with Alexander Fuchs, Darwin’s main
developer.
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among those candidate literals whose term depth does not exceed a current
term depth bound. Since by design of the inference rules it is impossible for
a context to contain two or more p-variants of the same literal, this selection
strategy implies the termination of any exhaustive sequence of inference rule
applications under the term depth bound. 22

After applying exhaustively all inferences rules with respect to the current
bound without being able to close the current branch of the derivation tree,
Darwin’s proof procedure checks whether the branch is incomplete. This is the
case if during the generation of the branch a candidate literal was computed
that exceeded the current depth bound. If the current branch is not incom-
plete it denotes a model of the input set, and the proof procedure reports
that. Otherwise, the procedure behaves according to one of several strategies,
as initially specified by the user. With the simplest of these strategies, the pro-
cedure just restarts the derivation from scratch, but with an increased depth
bound.

Backtracking

In exploring a derivation tree, Darwin’s proof procedure generates a choice
point for each (left) application of the Split rule. The depth-first exploration,
within the term depth bound, of the derivation tree is then achieved by back-
tracking to a previous choice point every time a branch is closed. Instead of
always going back to the most recent choice point, Darwin implements back-
jumping, a more effective form of chronological backtracking that takes into
account dependencies between choice points. The idea of backjumping is best
explained in terms of the calculus: suppose the derivation subtree below a
left node introduced by a Split rule application is closed and the literal added
on the left conclusion by that application is not needed to establish that the
subtree is closed. Then, the Split rule application can be viewed as not being
carried out at all. The proof procedure thus may skip the corresponding choice
point on backtracking and proceed to the previous one.

Backjumping is well known to be one of the most effective improvements for
DPLL-based SAT solvers. Its implementation for ME is not too difficult and
relies on keeping track of which context literals and clauses are involved in
particular in Assert and Close rule applications. Backjumping is an example of
a successful propositional technique that directly lifts to the proof procedure
of Darwin.

22 This termination property is not immediately obvious because of the infinite
supply of Skolem constants that can be used in Split inferences. Referring back to
Example 3.13, however, where we argued that no branch can contain more than
one Skolemized version of the same literal, one can see that Split inferences are not
problematic in this regard.
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Darwin also features dynamic backtracking (Ginsberg, 1993), a sophisticated
form of non-chronological backtracking. See (Baumgartner et al., 2006a) for
more details.

Conflict-based Learning

Another major conceptual improvement in DPLL-based solvers in the last
years has been lemma learning, a mechanism for generating new propositional
clauses that prevent later in the search combinations of split decisions that
have already led to closed subtrees in the derivation.

Something similar can be done in ME-based prover by analyzing the sequence
of rule applications of a closed branch. The analysis determines which of the
Split inferences along the branch were really relevant in allowing the appli-
cation of Close and saves this information so that the same split choices, or
similar choices that would also lead to a conflict, are avoided later in the
search. As in DPLL SAT solvers, a convenient way to save such information
is in the form of a clause added to the clause set so that applications of Assert
with this clause block prevent the repetition later of the Split inference that
caused the conflict.

In contrast to backjumping, adapting DPLL learning methods to an ME-
based prover is not immediate, first because one needs to lift properly to the
first-order level the lemma generation process so that it generates lemmas
that do prune the search space, and second because any such process,, when
carried over at a first-order level, is bound to add a significant computational
overhead that can offset in practice the advantages of pruning. On the other
hand, working at the first-order level offers the enticing possibility of achieving
learning in the more proper sense of word, with lemmas helping prune also
areas of the search space that do not duplicate previously explored ones.

Darwin successfully implements two variants of a learning mechanism that
lifts the main features of learning methods for DPLL procedures. In both
variants, lemmas are generated by a guided resolution process that starts with
the selected clause of the Close inference closing a branch and uses a selected
number of clauses involved in Assert inference along the branch. A description
of these variants and their positive effects on Darwin’s performance is given
in (Baumgartner et al., 2006b).

Context Unifiers and Selection Heuristics

The central operation in Darwin’s proof procedure is the computation of all
possible context unifiers of current clauses against the current context. The
system computes context unifiers of current clauses to identify literals that
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can be added to the context by the Split rule (Split candidates), and context
unifiers of subsets of input clauses to identify literals that can be added by
the Assert rule (Assert candidates). The set of such context unifiers is built
incrementally, but exhaustively, as the context grows. With this technique, all
possible Assert candidates can be eagerly added to a context, which correspond
to the eager unit propagation mechanism of DPLL. Also, all theoretically
necessary Split candidates at any point are available for inspection, allowing
the implementation of a heuristic selection mechanisms for choosing the best
literals to split with. The current selection heuristics in Darwin is based on
several considerations, such as whether a candidate contains variables only or
whether adding it will cause no proper branching in the derivation tree.

Darwin uses special data structures and a few dynamic programming tech-
niques to compute and store context unifiers, with the goal of limiting runtime
and memory requirements. In addition, it uses term indexing techniques on
context to support fast checking of the preconditions of the Split, Assert, and
Subsume rules. 23 More details on context unification in Darwin can be found
again in (Baumgartner et al., 2006a).

6 Related work

Approaches that have features in common with ME come from the following
four categories: first-order DPLL methods , instance-based methods , Resolution
methods and Tableau methods .

6.1 First-Order DPLL Methods

A “lifted” version of the DPLL method has been described in the early text-
book on automated reasoning by Chang and Lee (Chang and Lee, 1973). It
uses the device of pseudosemantic trees which, like ME, realize splits at the
non-ground level. Nethertheless, the pseudosemantic tree method is very dif-
ferent from our approach: in sharp contrast to ME, a variable is treated rigidly
there, i.e. as a placeholder for a (one) not-yet-known term. 24 Section 6.4 below
discusses rigid variable methods, and what is said there applies to the method
in (Chang and Lee, 1973) as well.

A more recent attempt to incorporate first-order reasoning into DPLL has

23 These preconditions require, in essence, to search the context for literals that
unify with, subsume, or are subsumed by a given literal.
24 However the term “rigid” is not used there, as it had not been yet introduced at
the time the book (Chang and Lee, 1973) was written.
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been made in (Parkes, 1999; Ginsberg and Parkes, 2000). Instead of instanti-
ating the input clauses into ground ones before applying a DPLL method, the
modified DPLL method in (Parkes, 1999; Ginsberg and Parkes, 2000) directly
takes advantange of the (first-order) clauses of the input clause set. More
specifically, these clauses are used for unit propagation on the basis of the cur-
rent partial (propositional) model candidate. In our terms, this corresponds
to working with ground contexts and using the Assert rule similarly as in ME,
but always adding a ground instance of the Assert literal to the context. In
(Parkes, 1999; Ginsberg and Parkes, 2000) it is proven that unit propagation
of this kind itself includes an NP-complete search problem (which, of course,
also applies to ME). However, it is argued that at the same time the much
more compact representations enabled by using first-order logic may well pay
off. A more fundamental difference between our approach and that in (Parkes,
1999; Ginsberg and Parkes, 2000) is that the latter is restricted to checking the
satisfiability of quantifier formulas in finite models only, whereas ME works
with full first-order logic.

The closest relative of the ME calculus is the FDPLL calculus developed by one
of us (Baumgartner, 2000). As mentioned in the introduction, ME is loosely
based on FDPLL. More precisely, the ME calculus can be specialized to the
core FDPLL calculus by

(1) removing the Subsume, the Resolve and the Compact inference rules (which
are optional in ME), and

(2) restricting Split to use only admissible context unifiers with a variable-free
remainder. 25

In terms of the present paper, the core calculus of FDPLL does not have sim-
plification rules and does not deal with variables – it just uses parameters.
However, in (Baumgartner, 2000) an extension of the core FDPLL calculus
to include reasoning with variables is sketched. Contrary to ME, mixed liter-
als are not allowed, and so the literals used there for splits are of the same
type—variable-free or parameter-free (or both). Even ignoring this aspect, ME

is much stronger than that version of FDPLL. Expressed in ME terms, the
rules mentioned under (1) above are still not available in FDPLL. Further-
more, admissible context unifiers are defined to be those that either satisfy
the restriction (2) above or have a unit remainder and use only parameter-
free context literals. In resolution terminology, FDPLL mimics unit-resulting
resolution, roughly, on the Horn clause subset of the input clause set.

The impact of the more limited capabilities of FDPLL can be seen by looking
at some examples. For instance, if the current context is just Λ = {¬v} and
there is a given clause P (x) ∨ Q(y) ∨ R(z), FDPLL will consider the clause

25 Using only such admissible context unifiers preserves completeness in ME.

44



instance P (u) ∨ Q(v) ∨ R(w) and split based on its literals, which contain
parameters . In contrast, ME will in essence carry out a case analysis accord-
ing to the three literals P (x), Q(y) and R(z), which have the advantage of
containing variables instead of parameters. 26

As another example consider the context Λ = {¬v, P (u1, u2), Q(x, a, z)} and
the clause R(y, z) ∨ ¬P (x, x) ∨ ¬Q(x, y, z). Based on the admissible context
unifier σ = {v 7→ R(a, z), u1 7→ u2, x 7→ u2, y 7→ a} 27 whose sole remainder
literal is R(a, z), the Split rule is applicable in ME. A comparable inference step
is not possible with FDPLL, as one of the involved context literals (namely,
P (u1, u2)) is not parameter-free.
In conclusion, due to the presence of the simplification inference rules Subsume,
Resolve and Compact and the better treatment of variables, the ME calculus
improves significantly on FDPLL.

6.2 Instance-Based Methods

Besides the FDPLL calculus, ME is related to the family of instance-based
methods . Proof search in instance-based methods relies on maintaining a set
of instances of input clauses and analyzing it for satisfiability until completion.
We point out that ME is not an instance-based method in this sense, as clause
instances are used only temporarily within the Split inference rule and can be
forgotten after the split has been carried out.

The contemporary stream of research on instance-based methods was initiated
with the Hyperlinking calculus (HL) (Lee and Plaisted, 1992). This calculus is
based on the idea of steadily growing a set of instances of input clauses in an
intelligent way, and regularly testing it for propositional unsatisfiability by an
integrated DPLL procedure. An important conceptual difference between ME

and HL is that the latter includes a DPLL procedure but does not (directly)
extend it to first-order clause logic.

The current successor of HL is the Ordered Semantic Hyperlinking calculus
(OSHL) (Plaisted and Zhu, 1997, 2000). OSHL has many interesting features,
for instance “semantical guidance” by assuming a procedural representation of
an (any) interpretation, that just has to be capable to decide if a given ground
literal is true in the interpretation. As in ME, the main operation in OSHL is
to detect an instance of a clause that is false in a current interpretation, and

26 As discussed in Section 3, the more variables a context literal has in place of
parameters, the more constraints it imposes on a derivation.
27 For simplicity, and without loss of generality in this case, we are not taking fresh
variants of the context literals in computing the context unifiers.
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then repair the interpretation (in the sense given here). However, unlike ME,
the repairs are carried out through ground literals .

Some instance-based calculi have been formulated within the (clausal) tableau
framework. Similar to ME, and unlike HL and its successors, they extend a
propositional method—this time propositional clausal tableaux—to the first
order level without resorting to a separate propositional solver.

The initial work in this direction is Billon’s disconnection method (Billon,
1996), followed by the calculus described in (Baumgartner, 1998) which re-
lates to the disconnection method pretty much in the same way as the hyper-
resolution calculus relates to the resolution calculus.

The disconnection method has been picked up by Letz and Stenz for further
improvements and efficiently implemented into a competitive prover (Stenz,
2002). The disconnection calculus, as they call it, uses clausal tableau as the
primary data structure. The tableau structure represents an exhaustive search
through all possible connections between literals in clauses; the (single) infer-
ence rule extends the current tableau by two clause instances found via a con-
nection on the branch. Thus, the disconnection calculus is conceptually rather
different to ME in that the main derivation rule there is based on resolving
pairs of complementary literals from two clauses, whereas ME’s splitting rule
is based on evaluating all literals of a single clause against a candidate model.

In (Letz and Stenz, 2001), further improvements on the disconnection calcu-
lus are discussed. Among them is a dedicated inference rule for deriving unit
clauses. Interestingly, all variables in such a derived unit clause have to be
identified for soundness reasons. Still, this inference rule represents a limited
and local form of “lemma learning” that does not have a direct counterpart
in the ME calculus. Directly comparable to ME are the more recent develop-
ments introduced in (Stenz and Letz, 2004). The disconnection calculus there
works with two kinds of variables: shared and local ones. The shared variables
correspond to what we call parameters—which are present in one form or the
other in all instance-based methods. A variable qualifies as a local variable if
it occurs in just one literal of a clause instance considered for tableau expan-
sion. There is a roughly corresponding requirement in what we call admissible
context unifiers, where a variable occuring in a (remainder) literal must not
occur in another remainder literal. The correspondence is not perfect, how-
ever, as clause instances for tableau expansion are derived differently from
ME in (Stenz and Letz, 2004). Nevertheless, the concepts are comparable,
and their use in subsumption tests is similar.

Two variants of an instance-based method are described by Hooker et al.
(Hooker et al., 2002). One of them, the “Primal Approach” seems to be very
similar to the disconnection method although, unfortunately, the relation with
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this method is not made explicit in (Hooker et al., 2002). The other variant,
the “Dual Approach”, differs from the former by the presence of auxiliary
clauses of the form K → L generated during the proof search, where (K,L) is
a connection of literals occurring in the current clause set. No simplification
mechanisms is described, such as for instance those based on unit propagation
rules. Both methods compare to ME in the same way as the disconnection
method, discussed above.

Finally, a rather abstract framework for instance-based calculi which also ad-
mits simplification techniques is described in (Ganzinger and Korovin, 2003).
The underlying idea is to work with a propositional abstraction of a candidate
model for the input clause set. That abstraction is used to guide the search
for a refutation in a rather flexible way. As with the Hyperlinking calculi, the
perhaps most significant difference between ME (or the disconnection calcu-
lus for that matter) and the framework in (Ganzinger and Korovin, 2003) is
that the latter relies on the execution of propositional satisfiability tests. This
has the advantage that off-the-shelf SAT solvers can be readily used for those
tests. On the other hand, it is unclear how to exploit first-order features like
our variables (or the “local variables” of the disconnection calculus) when re-
lying on a propositional solver. However, as shown in (Ganzinger and Korovin,
2003) by treating certain variable occurences in a special way it is sometimes
possible to replace the SAT solver by a decision procedure for some fragment
of first-order logic. This way, such a decision procedure can sometimes be lifted
to work on input formulas outside its fragment.

6.3 Resolution Methods

Resolution calculi are conceptually very different from the ME calculus, which
makes a comparison difficult. A common feature is model generation. Modern
completeness proofs for resolution calculi provide a method for constructing a
model of any saturated clause set not containing the empty clause (see (Bach-
mair and Ganzinger, 2001)). However, this is a conceptual construction, and
non-trivial postprocessing is necessary to extract a model in practive from
a failed refutation (but see (Ganzinger et al., 1997)). Typically, a model is
computed by enumerating all true ground literals, thereby interleaving this
enumeration with calls to the resolution procedure again in order to deter-
mine the “next” ground literal (Fermüller and Leitsch, 1993, 1996).

6.4 Tableau Methods

Apart from clausal tableau methods that are also instance-based methods,
which we have already discussed, clausal tableau calculi in general are related
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to ME for encoding, like ME, a model of the given clause set in an exhausted
open branch. For comparison purposes, it is useful to classify these calculi
according to whether they treat their variables rigidly or they instantiate
them by ground terms.

In tableau calculi with rigid variables , a variable in a tableau is a placeholder
for a (one) not-yet-known term (see e.g. (Fitting, 1990) for a basic version).
The meaning of rigid variables can also be captured by constraints (Peltier,
1999; Giese, 2001; van Eijck, 2001). Although (most) tableau calculi are proof
confluent, practically usable fair strategies to achieve proof convergence (cf.
Corollary 4.18) are hard to devise (but see (Beckert, 2003)).

Another drawback of the rigid variables is that they make it difficult to find
useful redundancy mechanisms such as, for instance, one that would in general
prevent to have an unbounded number of variants of the same literal along a
branch. More concretely, given the unit clause P (x), say, there seems to be
no simple justification for not enumerating variants P (x), P (x′), P (x′′), . . . of
P (x) along a branch. In fact, in general, and contrary to ME, one variant is
not enough for completeness, and it is difficult to (automatically) determine
sharp bounds on their number—a discussion on various options in the design
of rigid tableau calculi, including constraint-based approaches, can be found
in (Giese, 2002).

Ground-level tableau calculi avoid the problems with rigid variables by resort-
ing to the propositional level. While analytic tableau with the classical γ-rule
do not seem a suitable basis to build competitive theorem provers, there are
structural refinements for clause logic that are also related to hyper resolution
(Manthey and Bry, 1988; Baumgartner et al., 1996) or to Ordered Semantic
Hyper Tableaux (Yahya and Plaisted, 2002). However, these methods suffer
from an, generally unavoidable, don’t-know nondeterminism, which can lead
to an enumeration of the whole Herbrand base along a branch.

Finally, in contrast to ME, tableau calculi (which includes the disconnection
calculus) branch on subformulas, or, the literals of a clause in the clausal
case, as opposed to complementary literals. For the propositional case it is
easy to see that branching on complementary literals as done in ME is more
general than branching on clauses. In fact, each branching on a clause with n
literals can be simulated by n splits with complementary literals. Furthermore,
some improvements like factoring (see (Letz et al., 1994)) are automatically
realized by the branching on complementary literals approach. A systematic
investigation on how this fact exactly carries over to the first-order case—i.e.
ME vs. certain clausal tableau calculi—is left for future work.
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7 Conclusions

In this paper we introduced the Model Evolution (ME) calculus, a refutation
calculus for first-order clausal logic. The ME calculus extends the well-known
(propositional part of the) DPLL procedure to first-order logic by means of
unification-based, first-order versions of DPLL’s main inference rules. In fact,
the calculus is a lifting of DPLL to the first-order level and reduces to DPLL
in case of ground clause sets. Compared to its most immediate predecessor,
FDPLL (Baumgartner, 2000), ME is a more faithful lifting of DPLL because it
also lifts DPLL’s inference rules for unit propagation. Except for termination,
which is unachievable in the general first-order case, the calculus enjoys the
same theoretical properties of DPLL: it is sound, complete for fair derivations,
and proof convergent. The latter property in particular implies that any fair
proof procedure for ME is guaranteed to produce a refutation for unsatisfi-
able input clause sets. Also like DPLL, the calculus is such that terminating
derivations of a satisfiable clause set effectively compute a model of the set.

Our experience with implementing the ME calculus confirms the validity of
the idea of lifting DPLL, and its improvements, to the (full) first-order level.
The performance of the Darwin theorem prover for ME compares favorably
with much more mature state-of-the-art provers over the whole class of TPTP
problems without equality, and is superior than most of them over selected
non-trivial subclasses. Furthermore, much of the potential of the lifted DPLL
idea is still untapped given that at the moment Darwin implements only some
of the major improvements developed for DPLL. In general, there is still room
for further research on how to properly lift and adapt more DPLL improve-
ments to first-order logic, and or on devising new improvements directly for
the first-order level.

7.1 Further Research

We envision several directions for future theoretical work on the ME calculus
and its implementations. A few of them are listed below.

Semantical Guidance

As presented here, the ME calculus always starts with an interpretation that
assigns false to all ground atoms. By simply replacing the pseudo-literal ¬v by
v, it is possible to have the calculus start instead with a complementary initial
interpretation. The kind of semantic guidance achieved in OSHL (Plaisted
and Zhu, 2000) by means of a user-defined initial interpretation, is trivially
achievable in ME when this interpretation is denotable by a context: one
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simply starts the derivation with that context. More work is needed, however,
to allow ME to start with arbitrary interpretations, in particular, ones that
cannot be encoded into a (finite) context.

Equational Theories and Equality

In many theorem proving applications, an explicit treatment of equality is
mandatory. To our knowledge there are only two instance-based methods that
have been extended with dedicated equality inference rules for full equational
clausal logic. One is the disconnection calculus in (Letz and Stenz, 2002) and
the other is the instance-based method in (Ganzinger and Korovin, 2003).
Both of the extended calculi are based on superposition-style inference rules
(Bachmair and Ganzinger, 1998), with the second one also including rather
powerful redundancy criteria. Our initial results on extension of ME with in-
ference rules for equality reasoning are presented in (Baumgartner and Tinelli,
2005). Further work will concentrate on building an efficient and competitive
implementation of the new calculus.

ME as a decision procedure

A deduction system capable of deciding relevant classes of formulas is usually
of greater practical interest than a mere refutation system (e.g., to disprove
false “theorems” in a software verification context).
The ME calculus is guaranteed to terminate for clauses resulting from the
translation to clausal form of conjunctions of Bernays-Schönfinkel formulas 28

and hence gives a decision procedure 29 . The same holds for many instance-
based methods (see Section 6.2), but, interestingly, not for any known refine-
ment of the resolution calculus. On the other hand, there are refinements of the
resolution calculus that decide (see (Fermüller et al., 2001)) classes of formulas
not obviously decidable by ME or other instance based methods. It would be
interesting to investigate ways to refine ME so that it can decide some of these
classes or other classes not currently decided by resolution methods.
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8 Appendix

This appendix contains auxiliary lemmas, their proofs, and proofs of the re-
sults stated in the main part of this paper. It is structured in three parts.
Section 8.1 is a collection of results about contexts in general, not necessarily
about contexts as they evolve in derivations. The latter is the subject of Sec-
tion 8.2. The subsequent Section 8.3 then contains lemmas stating conditions
under which the mandatory inference rules of ME are applicable. The results
collected up to then were employed in Section 4.3 to prove our main theorem,
the completeness of ME.

8.1 Properties of Contexts

The first lemma is not concerned with contexts; it will be needed, however,
for some proofs below.

Lemma 8.1 For any literal L, the sets {K | K ≥ L} / ' and {K | K & L} /
' are finite.

That is, for a given literal L, there are only finitely many more general lit-
erals wrt. ≥ of L modulo p-variantship, and similarly for &. A similar result
formulated in terms of & and ≈ is proven in (Eder, 1985).
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Proof. Since K & L whenever K ≥ L, it is enough to show that the set
{K | K & L} / ' is finite.

In the following argumentation we will prove the claim using a tree representa-
tion of literals: if L is a literal, its tree representation is the (ordered) tree, the
root of which is labeled with the predicate symbol of the literal, inner nodes
are labeled with function symbols, and leaf nodes are labeled with constant
or variable symbols, all in the obvious way.

Recall that K ≥ L means there is a (p-preserving) substitution σ such that
Kσ = L. This means that the tree for L is obtained by replacing each variable
leaf node x in the tree for K by the tree for xσ, and similarly for parameters.
Clearly, the number of nodes in K is less than or equal to the number of nodes
in L.

Now let {x1, . . . , xn} ⊂ X and {u1, . . . , un} ⊂ V be finite sets of any n pairwise
different variables and any n pairwise different parameters, respectively,where
n is the number of nodes of the tree representation of L.

Let K be any literal such that K & L and such that K contains variables and
parameters from the finite sets just mentioned only.

Because the number of nodes in K is less than or equal to the number of
nodes in L, it follows together with the assumed finite sets of variables and
parameters that only finitely many such literals K & L exist. Let K be the
finite set of all these literals.

Notice that K is finite also if the signature under consideration contains in-
finitely many function symbols. This holds, because K cannot contain any
function symbol not occurring in L (because then K could not be instantiated
to L), and there occur only finitely many function symbols in L.

Clearly, every literal K with K & L is a '-variant of some literal in K.
Therefore, with K being finite, so is {K | K & L} / '. ut

Lemma 8.2 Let Λ be a context and let K,L be literals. If K ≥ L and L ∈≤ Λ,
then K is contradictory with Λ.

In words, if the complement of some literal from Λ and K admit a common
p-instance, then K is contradictory with Λ. Most of the times this lemma is
used only in a weaker form, where K = L.

Since the calculus works on non-contradictory contexts only, the lemma above
implies that no context contains a literal and the complement of one of its
p-instances.
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Proof. Suppose that K ′ ∈ Λ, K ′ ≥ L and K ≥ L. Let K ′′ ' K ′ be a fresh
p-variant of K ′. With K ′ ≥ L it follows K ′′ ≥ L. Let σ be a p-preserving
substitution such that K ′′σ = L. Since K ′′ is fresh, σ may be assumed to
move only the variables and parameters of K ′′. Therefore σ will not modify
L, and so L = Lσ follows. Altogether then K ′′σ = Lσ.

Because of K ≥ L there is a p-preserving substitution σ′ such that Kσ′ = L.
This implies Kσ′σ = Lσ. Since K ′′ is fresh, σ′ may be assumed not to modify
K ′′, and K ′′ = K ′′σ′ follows. With K ′′σ = Lσ from above it follows K ′′σ′σ =
Lσ. Together with Kσ′σ = Lσ it follows K ′′σ′σ = Kσ′σ. But then, since both
σ′ and σ are p-preserving and because of K ′′ ∈' Λ, K is contradictory with
Λ. ut

Lemma 8.3 Let Λ be a context, K ∈ Λ and K ′, L literals. If K ≥ L and K ′

shields L from K then K ′ is contradictory with Λ.

The previous lemma implies that no literal in a context produced by the ME

calculus can shield a p-instance of another literal in the context. This fact
easily entails the next two results below.

Proof. Suppose that K ≥ L and K ′ shields L from K. This means there is
literal K ′′ such that K ′ ≥ K ′′ and K � K ′′ & L. Let σ, σ′ be p-preserving
substitutions such that Kσ = L and K ′σ′ = K ′′. Without loss of generality
assume that K ′′ does not contain a single variable. (If this is not the case, let
ρ be a (p-preserving) substitution that maps each of K ′′’s variables to a fresh
parameter, and observe that K ′ ≥ K ′′ρ and K � K ′′ρ & L hold; in the sequel
K ′′ itself will be used to denote K ′′ρ then.)

We distinguish two exhaustive cases, where the first case will directly lead to a
proof of the conclusion, while the second case will be shown to be impossible.

If K ≥ K ′′, this implies K ′′ ∈≤ Λ, and so with K ′ ≥ K ′′ it follows immediately
with Lemma 8.2 that K ′ is contradictory with Λ.

If K 6≥ K ′′, then from K � K ′′ and K ′′ & L conclude that there are substitu-
tions δ and δ′ such that Kδ = K ′′ and K ′′δ′ = L, where δ is not p-preserving.
For later use note Kδδ′ = L.

Let U := {u1, . . . , un} = Par(K) be the (pairwise different) parameters of K,
for some parameters u1, . . . , un and n ≥ 0. WithKσ = L from above, and since
σ is p-preserving, there is a subset {v1, . . . , vn} of L’s parameters that σ maps
U onto, for some parameters v1, . . . , vn. Without loss of generality assume that
uiσ = vi, for i = 1, . . . , n. Of course, the parameters in {v1, . . . , vn} must be
pairwise different, too.

From Kδδ′ = L and Kσ = L it follows uiδδ
′ = vi. Clearly, uiδ is a variable or
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a parameter, because otherwise uiδδ
′ = vi would be impossible. However, K ′′

was assumed above to contain no single variable. With Kδ = K ′′ it follows the
stronger result that uiδ is a parameter. Now, it is impossible that a bijection
from U onto Uδ exists, because then, with U being the set of all parameters
in K, this substitution, say, δU , and the substitution δ|X could be combined
as the p-preserving substitution δUδ|X , and K(δUδ|X) = K ′′ would follow,
contradicting the current case K 6≥ K ′′. This implies that δ identifies at least
two parameters in U , say u1 and u2. But then, with u1δ = u2δ it is impossible
to have (u1δ)δ

′ = v1, (u2δ)δ
′ = v2 and v1 6= v2. Hence the case K 6≥ K ′′ is

impossible, which remained to be shown. ut

Lemma 8.4 Let Λ be a non-contradictory context and K ∈ Λ. Then, for any
literal L with K ≥ L, K strongly covers L in Λ.

Proof. Let L be a literal with K ≥ L. It follows immediately K & L. If K
does not strongly cover L in Λ, then there is a literal K ′ ∈ Λ that shields L
from K in Λ. But then, by Lemma 8.3 K ′ is contradictory with Λ. Since Λ is
given as non-contradictory, there is no such literal K ′ ∈ Λ, and so K strongly
covers L in Λ. ut

Lemma 8.5 Let Λ be a non-contradictory context and K,L be literals. If K
strongly covers L in Λ then K produces L in Λ.

This lemma states that the “strongly covers” relation is stronger than the
“produces” relation. That the converse of the lemma does not hold can be
seen from Example 3.7.

Proof. Suppose that K strongly covers L in Λ. It follows that K covers L
in Λ. If there is a K ′ ∈ Λ that shields L from K, then by Lemma 8.3 K ′ is
contradictory with Λ. Since Λ is given as non-contradictory, there is no such
literal K ′ ∈ Λ, and so K produces L in Λ. ut

Lemma 8.6 Let Λ be a non-contradictory context and K ∈ Λ. Then, for any
literal L with K ≥ L,

(i) K produces L in Λ, and
(ii) Λ does not produce L.

Proof. Let L be a literal such that K ≥ L. That K produces L in Λ follows
immediately with Lemmas 8.4 and 8.5.

To show that Λ does not produce L, let K ′ ∈ Λ be any literal such that
K ′ & L. 30 We will show that K ′ does not produce L in Λ. From the given
assumption K ≥ L it follows (a) with Lemma 8.4 that K strongly covers L in

30 If such a literal does not exist, Λ cannot produce L.
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Λ, and (b) that K shields L from K ′. Together with K ′ ∈ Λ this implies that
K ′ does not produce L in Λ. ut

Lemma 4.7 Let Λ be a non-contradictory context. Then, for any literal L, Λ
produces L or Λ produces L (or both).

Proof. Let L be any literal. We will directly prove that Λ produces L or Λ
produces L.

Due to the presence of the pseudo-literal ¬v in Λ, Λ covers L (the case that
¬v covers L in Λ is possible). More precisely, there is a K ∈ Λ such that there
is no literal K ′′ ∈ Λ with K � K ′′ & L or K � K ′′ & L. This is possible,
because there are only finitely many literals K ′′ (modulo renaming) such that
K ′′ & L or K ′′ & L (cf. Lemma 8.1), and because the relation � is a strict,
partial ordering, and hence does not admit cycles.

For reasons of symmetry we consider in the sequel only the case where K & L
and there is no K ′′ ∈ Λ with K � K ′′ & L. Observe this just means that K
covers L in Λ.

By condition (2) in Definition 3.6, if there is no K ′ ∈ Λ that strongly covers L
in Λ and that shields L from K, then K produces L in Λ. Otherwise, if there
is such a K ′ ∈ Λ, then by Lemma 8.5 K ′ produces L in Λ. Together we have
thus shown that Λ produces L or Λ produces L. ut

Lemma 8.8 Let Λ be a context and K,K ′, L literals. If K produces L in Λ
and K & K ′ & L then K produces K ′ in Λ.

Proof. Suppose that K produces L in Λ and K & K ′ & L. We will show that
K produces K ′ in Λ.

Clearly, K cover K ′ in Λ (for, if it did not, K would not cover L in Λ either,
contradicting that K produces L in Λ). Now, if K would not produce K ′ in
Λ, then there is a K ′′ ∈≤ Λ such that K � K ′′ & K ′. But with K ′ & L it
would follow K � K ′′ & L, and so K would not produce L in Λ either. ut

The next two lemmas complement each other. Their prerequisites mean that
L is contradictory with Λ, as witnessed by a literal K ∈' Λ. The first lemma
considers the case that L is parameter-free, and the second lemma considers
the case that L is variable-free. Both lemmas express how a literal K ′ ' K
can take the rôle of K.
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8.2 Evolving Contexts

Derivations are about about stepwise modifications of sequents. This subsec-
tion contains lemmas mainly describing constraints on how contexts in se-
quents can evolve in a derivation. One such constraint, for instance, is that it
is impossible to derive a sequent with a context that contains two p-variants
of the same literal.

For the rest of this section, we make the same assumptions as stated in the
beginning of Section 4.3.3. In particular thus let Φ be a set of parameter-free
Σ-clauses and assume that D is a fair derivation of Φ that is not a refutation.
Furthermore, let B = (Ni)i<κ be an exhausted branch of D’s limit tree and
let Λi ` Φi denote the sequent labeling the node Ni in B, for all i < κ.

Lemma 8.9 For all i < κ, Λi is not contradictory.

Being non-contradictory is a fundamental property of the contexts manipu-
lated by the calculus. Lemma 8.9 essentially says that rule applications pro-
duce non-contradictory contexts from non-contradictory contexts.

Proof. The proof is by induction on i. For the base we have Λ0 = {¬v}
and this set is trivially not contradictory. For the induction step we take as
induction hypothesis the claim of the lemma. Observe that each inference rule
that extends a context includes as an applicability condition that the resulting
context(s) is (are) not contradictory. With this observation the induction step
follows immediately. ut

The next lemma extends the previous one to the limit case.

Lemma 4.13 ΛB is not contradictory.

Proof. Suppose that ΛB is contradictory. Then there are literals L ∈ ΛB and
K ∈' ΛB and there is a p-preserving substitution σ such that Lσ = Kσ. By
the compactness property, there is a j such that both L ∈ Λj and K ∈' Λj.
By virtue of the substitution σ, Λj is contradictory then. However, this is
impossible by Lemma 8.9. ut

Lemma 8.11 The sequent Λ, L ` Ψ is not derivable from a sequent Λ ` Ψ
in B if L ∈≤ Λ or L ∈≤ Λ.

Lemma 8.11 states that the inference rules of the ME calculus never add a
literal to a context in presence of a more general one (wrt. ≥). One could say
that this fact expresses a kind of loop check.

Proof. It suffices to consider potential applications of the Split or the Assert
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inference rule to Λ, because these are the only rules that can extend a context.

By the applicability conditions of both the Split and the Assert inference rules,
the context Λ can be extended with the literal L only if L is not contradictory
with L. Now, if L ∈≤ Λ then by Lemma 8.2 L is contradictory with Λ and so
in this case neither Split nor Assert is applicable. Hence it only remains to be
shown that the sequent Λ, L ` Ψ is not derivable from Λ ` Ψ if L ∈≤ Λ.

Split) Recall that the Split rule is applicable only if neither K nor K
sko

is con-
tradictory with Λ, where K is the remainder literal to split with. We consider
two cases, corresponding to the case that the literal L in the lemma statement

is K or is K
sko

. In both cases we will show that Split is not applicable by

showing that K or K
sko

is contradictory with Λ.

In the first case the literal L in the lemma statement is K. That K ∈≤ Λ
holds means there is a literal K ′ ∈ Λ and a p-preserving substitution σ such
that K ′σ = K.

Let µ be the Skolemizing substitution used, i.e. the substitution µ such that
Kµ = Ksko. From K ′σ = K it follows trivially that K ′σµ = Kµ. Since
σµ is p-preserving, we then have that K ′ ≥ Kµ. With Kµ = Ksko we get

K ′ ≥ Ksko, or equivalently K ′ ≥ K
sko

. Since K ′ ∈ Λ, this means in other

words K
sko ∈≤ Λ. But now, by Lemma 8.2, K

sko
is contradictory with Λ. This

completes the proof for the first case.

In the second case the literal L in the lemma statement is K
sko

. That K
sko ∈≤

Λ holds means there is a literal K ′ ∈ Λ and a p-preserving substitution σ such

that K ′σ = K
sko

.

Let µ be the Skolemizing substitution used, i.e. the substitution µ such that
Kµ = Ksko. It can be written as µ = {x1 7→ a1, . . . , xn 7→ an}, where x1, . . . , xn
are all the variables occurring in K, and a1, . . . , an are fresh constants. Now,
because the constants a1, . . . , an are fresh, none of them will occur in K. This
means that we can consider the “substitution” µ′ = {a1 7→ x1, . . . , an 7→ xn}
and have that K = Kµµ′ = Kskoµ′. From K ′σ = K

sko
it follows trivially

K ′σµ′ = K
sko
µ′.

Recall that the substitution σ is p-preserving. We may assume that all the
variables moved by σ are just the variables of K ′, and each variable in K ′

is moved by σ to some Skolem constant ai, so that K ′σ = K
sko

holds. It
follows that the substitution σµ′ is a renaming on V and each variable in
K ′ is moved to some variable xi (not neccessarily in an injective way). More
formally, K ′ ≥ K ′σµ′ holds.
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Now, from K ′σµ′ = K
sko
µ′ and with K = Kskoµ′ we get easily K ′σµ′ = K.

Since K ′ ∈ Λ this means in other words K ∈≤ Λ. But now, by Lemma 8.2, K
is contradictory with Λ. This completes the proof for the second case.

Together, thus, K or K
sko

is contradictory with Λ, which remained to be
shown.

Assert) The proof is immediate from the applicability condition from Assert,
which explicitly demands that there is no K ∈ Λ such that K ≥ L. ut

In the course of the development of a branch, a literal in a sequent’s context
may be deleted by means of the Compact rule. Such a deletion is only possible
in presence of a p-subsuming literal, which takes the rôle of the deleted literal.
This process may continue and is formalized in the following definition.

Definition 8.12 Let K be a literal. For all i < κ, if L ∈ Λi then the trace of
L from Λi is the sequence (Lj)i≤j<κ, where Lj := L if j = i, and for all j > i,

Lj :=


K if Compact is applied with selected literal Lj−1 and

subsuming literal K to Λj−1 ` Φj−1 to obtain Λj ` Φj

Lj−1 otherwise

Lemma 8.13 Let i < κ and L ∈ Λi. For every j with i ≤ j < κ, there is a
K ∈ Λj such that K ≥ L.

While growing a branch, the ME calculus can delete a literal from the current
context by means of the Compact rule. Such a deletion is only possible after
the addition of a p-subsuming literal, which takes the rôle of the deleted
literal. The p-subsuming literal itself may be deleted later, in a similar way.
Lemma 8.13 is a formal statement of this process.

Proof. Consider the trace (Lj)i≤j<κ of L from Λi. Each literal Lj from the
trace, where i ≤ j < κ, is contained in Λj, and Lj ≥ L holds by construction
of the trace. ut

Lemma 8.14 For all distinct literals K,L ∈ ⋃
i<κ Λi it holds that K 6' L.

Lemma 8.14 states that if some context in the branch B contains a literal K,
then neither this nor any other context can contain a p-variant L ofK. This
holds even if K is deleted at some point along the branch.

Proof. Assume by way of contradiction that K ' L for some different literals
K,L ∈ ⋃

i<κ Λi. Notice first that not both K and L can be pseudo-literals,
i.e. of the form ¬v, because the context Λ0 contains exactly one such pseudo-
literal and the calculus has no inference rules to add (or to delete) those. If
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only one of K and L is a pseudo-literal, the lemma holds trivially. Hence, from
now on assume that neither K nor L is a pseudo-literal.

There must be finite ordinals j and k such that L ∈ Λj and K ∈ Λk. W.l.o.g.
assume that j ≥ k. Furthermore j and k may be chosen minimal, i.e. L /∈ Λj−1

and K /∈ Λk−1. This means that some inference rule is applied to the node
Nj−1 that extends the context Λj−1 with L to obtain Λj (and similarly for K).
Observe that the inference rules of ME extend the given context by at most
one literal. In particular, K cannot have been added to Λj−1 by the considered
inference rule application. Thus, not only j ≥ k but also j > k must hold.

But then, by Lemma 8.13 there is a literal K ′ ∈ Λj−1 such that K ′ ≥ K.
Together with K ' L it follows immediately that K ′ ≥ L. However, according
to Lemma 8.11 the considered inference rule application that extends Λj−1 by
L is not possible. A plain contradiction. Thus, we must have K 6' L. ut

Lemma 8.15 For all i < κ and L ∈ Λi there is a K ∈ ΛB such that K ≥ L.

Lemma 8.15 essentially states that the set of persistent context literals of the
branch B contains generalizations of all the context literals along B.

Proof. Consider the trace (Lj)i≤j<κ of L from Λi. All its consecutive different
elements Lj and Lj+1 are those where the Compact rule is applied to the
sequent Λj ` Φj labeling the node Nj. That Compact is applied means Lj+1 ≥
Lj. Of course, both Lj+1 ∈ Λj and Lj ∈ Λj must hold as well. By Lemma 8.14
we can conclude that Lj+1 6' Lj. Together with Lj+1 ≥ Lj this entails that
Lj+1 
 Lj.

In other words, the considered consecutive different elements from the trace
determine a sequence of increasing literals wrt. 
. With Lemma 8.1 it follows
immediately that this sequence is finite. If the sequence is non-empty, let K
be its last element. Otherwise, let K = L. In both cases it is easy to see that
K ∈ ΛB and K ≥ L. ut

Lemma 8.16 If L ∈ ΛB and L ∈ Λi, for some i < κ, then L ∈ Λj, for all
j ≥ i with j < κ.

This means if a persistent literal of a context is present at some time i, then
it is present from that time on. This is not trivial, as it does not follow from
the definition of “persistency” alone: that definition is consistent with having,
say, L ∈ Λi, L /∈ Λi+1 and L ∈ Λj+2 for j ≥ i. The result above instead really
expresses a property of ME calculus.

Proof. Suppose L ∈ ΛB and L ∈ Λi for some i as stated. Suppose, to the
contrary of the lemma conclusion, there is a j ≥ i such that L /∈ Λj. By
Lemma 8.13 there is a K ∈ Λj such that K ≥ L. By induction we now show
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that L /∈ Λk for all k ≥ j with k < κ. Once shown, this completes the proof,
because this results contradicts the given assumption L ∈ ΛB. We further take
the invariant that, for every k as stated, there is a literal K ∈ Λk such that
K ≥ L.

k = j) Trivial, as L /∈ Λj and K ∈ Λj with K ≥ L is assumed.

k 7→ k + 1) We consider the possible inference rule applications to derive
Λk+1 ` Φk+1 from Λk ` Φk, thereby concentrating on the non-trivial cases.

If Compact is applied to Λk ` Φk with selected literal K, both Λk and Λk+1

must contain a literal K ′ ≥ K. By the invariant we know K ≥ L, and so
K ′ ≥ L follows. Therefore chose now K := K ′ to preserve the invariant.

If some inference rule is applied to extend Λk to Λk+1, L
′, for some literal L′,

then with Lemma 8.11 it follows K 6≥ L. This implies L /∈ Λk+1. The invariant
is trivially preserved.

This completes the induction, and hence the whole proof. ut

Lemma 8.17 Let K,L be two literals. If K does not strongly cover L in ΛB,
then there is an i < κ such that for all j with i ≤ j < κ, K does not strongly
cover L in Λj.

Proof. Suppose that K does not strongly cover L in ΛB. We will directly prove
the conclusion.

If K 6& L then the lemma holds trivially (take i = 0). Hence assume K & L
from now on. That K does not strongly cover L in ΛB then implies that
ΛB shields L from K. This means, there is a K ′ ∈ ΛB and a p-preserving
substitution σ such that K � K ′σ & L. Since K ′ ∈ ΛB there is a k < κ
such that K ′ ∈ Λk. By Lemma 8.15 there is a K ′′ ∈ ΛB with K ′′ ≥ K ′. Since
K ′′ ∈ ΛB there is an i < κ such that K ′′ ∈ Λj, for all j ≥ i with j < κ.

Let σ′ be a p-preserving substitution such that K ′′σ′ = K ′. From this, K �
K ′′σ′σ & L follows immediately. Because both σ′ and σ are p-preserving, σ′σ
is p-preserving as well. Thus, K ′′ shields L from K. Since K ′′ ∈ Λj, for all j
with i ≤ j < κ, Λj shields L from K, and so K does not strongly cover L in
Λj. ut

Lemma 4.14 Let K,L be two literals with K ∈ ΛB. If K produces L in ΛB,
then there is an i < κ such that for all j ≥ i with j < κ, K ∈ Λj and K
produces L in Λj.

Proof. Assume that K produces L in ΛB. We will directly prove the conclusion.

Since K ∈ ΛB there is a k < κ such that K ∈ Λk, for all j ≥ k. However,
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there is no guarantee that k is the index i we are looking for. Informally, it
might be the case that a literal K ′ shielding L from K and strongly covering
L is present in Λk or some successor context. While there is no way then of
preventing any such context to shield L from K, we will show that neccessarily
none of the finitely many literals K ′ shielding L from K will strongly cover
L from some timepoint on (Lemma 8.17 will be used for this). More formally,
let

M = {K ′ | there is an m ≥ k with m < κ such that
K ′ ∈≤ Λm and K � K ′ & L}

be those literals in Λm that shield L from K, for some m ≥ k.

Since K ′ & L for each K ′ ∈ M , the set M / ' must be finite by Lemma 8.1.
Moreover, M is trivially a subset of

⋃
i<κ Λi. Therefore Lemma 8.14 is appli-

cable, and it gives us K ′1 6' K ′2 for any two different literals K ′1, K
′
2 ∈M . This

means that each element of M / ' is a singleton. In sum, M / ' is a finite
set of (singleton) equivalence classes. Therefore M itself is finite.

Let

M ′ = M ∩ ΛB

be the set of persistent literals of ΛB and of M that shield L from K. Clearly,
with M being a finite set, M ′ also is. Let k′ < κ be the smallest index such that
M ′ ⊆ Λj′ , for all j′ ≥ k′ (such a k′ must exist by the compactness property).

It is impossible that Λk′ is extended later with a new literal that shields L
from K. More formally, for all j′ ≥ k′, any literal K ′′ ∈ Λj′ that shields L from
K is contained in M ′. This is, because for any such literal K ′′, by Lemma 8.15
there is a K ′ ∈ ΛB, with K ′ ≥ K ′′. It is easy to see that then K ′ shields L
from K, and hence K ′ is contained in M ′, and so is contained in Λk′ .

Because of this property, that any literal in Λj′ (for any j′ ≥ k′) that shields L
from K is already contained in M ′, to prove the claim it suffices by definition
of productivity to show that from some timepoint on equal or later than k′,
none of the literals in M ′ strongly produces L in that contexts.

More precisely, for any literal K ′ ∈ M ′, from K ′ ∈ ΛB, the fact that K ′

shields L from K, and the assumption that K produces L in ΛB, conclude
by the definition of productivity that K ′ does not strongly cover L in ΛB.
Then, by applying Lemma 8.17 to each literal K ′ ∈M ′, we can conclude from
the finiteness of M ′ that there is an index i ≥ k′ such that for all j ≥ i and
for each K ′ ∈ M ′, K ′ does not strongly cover L in Λj. Together with the
conclusion above that any literal in Λj′ (for any j′ ≥ k′) that shields L from
K is already contained in M ′, this implies that K produces L in Λj, for all
j ≥ i. To complete the proof it is enough to recall that K ∈ Λj for all j ≥ k
with j < κ and that i ≥ k′ ≥ k. ut

64



8.3 Properties of Inference Rules

The following lemmas provide sufficient conditions for the applicability of the
main rules of the calculus to a given context.

Lemma 4.9 (Lifting Lemma) Let Λ be a non-contradictory context. Let
C = L1 ∨ · · · ∨ Ln be a Σ-clause and Cγ a ground Σ-instance. If Λ pro-
duces L1γ,. . . ,Lnγ, then there are fresh variants K1, . . . , Kn ∈' ΛΣ and a
substitution σ such that

(1) σ is a most general simultaneous unifier of {K1, L1}, . . . , {Kn, Ln},
(2) for all i = 1, . . . , n, Li & Liσ & Liγ,
(3) for all i = 1, . . . , n, Ki produces Liσ in Λ.

Proof. Let i ∈ {1, . . . , n} and assume that Λ produces Liγ. Then, there are
literals K ′i ∈ Λ such that K ′i produces Liγ in Λ. Let Ki ' K ′i be fresh variants
of K ′i. It is easy to see that Ki ∈' Λ produces Liγ in Λ. Because all the Ki’s are
fresh, they are pairwise disjoint, and each Ki is disjoint from C. Furthermore,
each Ki must be a Σ-literal (and not a Σsko-literal), because if Ki contains
some Skolem constant, Ki & Liγ would not hold (recall that Liγ is a ground
Σ-literal) and thus Ki would not produce Liγ in Λ.

By definition of productivity, Ki & Liγ, that is, there is a substitution πi such
that Kiπi = Liγ. Since Ki is variable disjoint from C, we can assume that πi
moves only the variables and the parameters of Ki. Now, since Ki is disjoint
from Kj for j ∈ {1, . . . , n} distinct from i, and πi is a ground substitution for
Ki, we have that Kiπi = Kiπ where π := π1 · · · πi · · · πn. Since Liγ is ground,
it follows immediately that Liγ = Liγπ.

We may assume that all variables moved by γ occur in C only (otherwise
restrict γ respectively). Together with the assumptions made it follows that
Ki = Kiγ, which implies trivially that Kiπ = Kiγπ.

Putting together all results obtained so far together, we get that Kiγπ = Liγπ
for all i = 1, . . . , n. In other words, γπ is a simultaneous unifier of {K1, L1}
. . . , {Kn, Ln}. It follows that {K1, L1} . . . , {Kn, Ln} admits a simultaneous
mgu σ, which proves item 1 in the statement of the lemma.

Now, to prove item 2 observe that since Liγ is ground, Liγπ = Liγ. Since
σ is a more general substitution than γπ we know that γπ = σδ for some
substitution δ. It follows that Liσδ = Liγπ = Liγ. In other words, Liσ & Liγ.
But then L & Liσ & Liγ as desired.

To prove item 3 first observe that Ki & Liσ because Kiσ = Liσ. By item 2 we
then have that Ki & Liσ & Liγ. Recalling that the literal Ki produces Liγ in
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Λ, it follows by Lemma 8.8 that Ki produces Liσ in Λ as well. ut

Lemma 4.10 (Existence of Admissible Context Unifiers) Let Λ be a con-
text, C a clause and σ a context unifier of C against Λ. Then, there is a re-
naming ρ such that σ′ := σρ is an admissible context unifier of C against Λ
with the same context literals as σ.

Proof. Let C = L1 ∨ · · · ∨ Ln for some n ≥ 0. By Definition 3.9 of context
unifier, for all i = 1, . . . , n there is a Ki ∈' Λ such that Kiσ = Liσ. Moreover,
there is an m ∈ {1, . . . , n} such that (Par(Ki))σ ⊆ V for all i = 1, . . . ,m and
(Par(Ki))σ 6⊆ V for all i = m+ 1, . . . , n.

We are going to construct a renaming substitution ρ as stated. Let x1, . . . , xk
be the variables such that {x1, . . . , xk} = Var(Lm+1σ∨· · ·∨Lnσ), i.e. all vari-
ables occurring in the remainder. Define ρ := {x1 7→ u1, . . . , xk 7→ uk, u1 7→
x1, . . . , uk 7→ xk, }, where u1, . . . , uk are pairwise different and fresh parame-
ters 31 .

Clearly, ρ is a renaming. It remains to show that σρ is admissible for Split.
Recall that (Par(Ki))σ ⊆ V holds, for i = 1, . . . ,m. By construction, all
the parameters moved by ρ are fresh parameters, none of which therefore
can occur in Ki. In other words, (Par(Ki))ρ = Par(Ki) holds, which en-
tails (Par(Ki))σρ = (Par(Ki))σ. (However, (Par(Ki))σρ 6⊆ V , for i = m +
1, . . . , n, will in general not hold). Therefore, there is a m′ with m ≤ m′ ≤ n
such that (Par(Ki))σρ ⊆ V , for i = 1, . . . ,m′ and (Par(Ki))σρ 6⊆ V , for
i = m′ + 1, . . . , n.

None of the remainder literals Kiσρ, for i = m + 1, . . . , n, contains a single
variable. Hence the disjointness requirement in the definition of admissible
context unifier is trivially satisfied. This concludes the proof of existence of a
renaming ρ as claimed. ut

The following lemma applies (in particular) to remainders of admissible con-
text unifiers. The lemma implies that if a clause has an admissible context
unifier, against a given context, with a remainder all of whose literals are indi-
vidually contradictory with the context, then the clause has a context unifier
with an empty remainder.

Lemma 8.21 Let Λ be a context, L1 ∨ · · · ∨ Ln be a clause, where n ≥ 0,
possibly containing mixed literals, and such that for all distinct i, j = 1, . . . , n,
Var(Li) ∩ Var(Lj) = ∅. If for all i = 1, . . . , n, Li is contradictory with Λ

31 That is, every variable in the remainder is renamed by ρ to a parameter. From
a practical point of view this is absurd, and it is better to compute a renaming
that keeps as many variables in the remainder as possible. For the purpose of the
completeness proof, however, the renaming ρ as constructed will do.
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then there are fresh literals K1, . . . , Kn ∈' Λ and a substitution δ such that
the following holds:

(1) δ is a simultaneous unifier of {K1, L1}, . . . , {Kn, Ln},
(2) for all i = 1, . . . , n, Dom(δ) ∩ Par(Li) = ∅, (i.e. δ does not move any

single parameter in the given clause)
(3) for all i = 1, . . . , n, (Par(Ki))δ ⊆ V .

Proof. Let Λ and L1∨· · ·∨Ln be as stated, and such that the condition in the
lemma result is satisfied. The conclusions, items 1–3, are proven by induction
on n.

Base) If n = 0 then the result follows trivially by choosing for δ the empty
substitution.

Step) Suppose n > 0 and consider the clause L1 ∨ · · · ∨ Ln−1. Clearly, for
all distinct i, j = 1, . . . , n − 1, Var(Li) ∩ Var(Lj) = ∅ holds. Therefore, by
the induction hypothesis there are fresh literals K1, . . . , Kn−1 ∈' Λ and a
substitution δ′ such that

(1) δ′ is a simultaneous unifier of {K1, L1}, . . . , {Kn−1, Ln−1},
(2) for all i = 1, . . . , n− 1, Dom(δ′) ∩ Par(Li) = ∅,
(3) for all i = 1, . . . , n− 1, (Par(Ki))δ

′ ⊆ V .

Since Ln is contradictory with Λ, there is a literal K ∈' Λ and a p-preserving
substitution σ such that Lnσ = Kσ. Let Kn be a fresh p-variant of K. Let
ρ be a renaming substitution such that Knρ = K. Let ρ′ = ρ|Var(Kn)∪Par(Kn)

It follows easily Knρ
′ = K. Since Kn is fresh, ρ′ will not move variables or

parameters in Ln, i.e. Ln = Lnρ
′ holds. From Lnσ = Kσ it follows Lnρ

′σ =
Kσ = Knρ

′σ. Since σ is p-preserving, σ|V is a renaming on the parameters,
and (σ|V )−1 exists. This implies trivially Par(Ln)σ(σ|V )−1 = Par(Ln), i.e.
σ(σ|V )−1 does not move any parameter in Ln. With Ln = Lnρ

′ it follows
that the substitution σ′ := ρ′σ(σ|V )−1 does not move any parameter in Ln.
From Lnρ

′σ = Knρ
′σ it follows trivially Lnρ

′(σσ|V )−1 = Kρ′(σσ|V )−1, i.e.
Lnσ

′ = Knσ
′.

Now let σ′′ := σ′|Var(Ln)∪Var(Kn)∪Par(Kn). From Lnσ
′ = Knσ

′ it follows Lnσ
′′ =

Knσ
′′ (recall that σ′ does not move any parameter in Ln and hence Par(Ln)

need not be included in the domain restriction of σ′ defining σ′′).

Let δ := σ′′δ′ be the substitution to prove the induction step. We have to
show items 1 to 3 to hold. Since all the variables moved by σ′′ occur in Ln
or Kn, Kn is fresh and Ln is variable disjoint with Li, for i = 1, . . . , n − 1,
σ′′ will not move any variable in any Li or in any Ki. Since Kn is fresh, and
all parameters moved by σ′′ occur in Kn, σ′′ will not move any parameter
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in any Li or in any Ki (nor in Ln, as concluded above). This implies that
Liσ

′′ = Li and Kiσ
′′ = Ki, for i = 1, . . . , n − 1. With Kiδ

′ = Liδ
′ from

the induction hypothesis conclude Kiσ
′′δ′ = Liσ

′′δ′, i.e. Above we concluded
Lnσ

′′ = Knσ
′′, which implies trivially Lnσ

′′δ′ = Knσ
′′δ′. Together and using

the identity δ = σ′′δ′ this gives the proof for item 1 for the induction step.

That item 2 to be proven carries over from the induction hypothesis to the
induction step follows immediately from the definition of σ′′ (recall that the
parameters moved by σ′′ is a subset of Par(Kn)).

It is not difficult to see that all parameters moved by σ′′ are moved to param-
eters: since σ′′ is obtained from σ′ be restricting the domain of σ′, it suffices
to consider σ′. Recall that σ′ = ρ′σ(σ|V )−1, where all the parameters moved
by ρ′ are moved to parameters. The substitution σ′ is p-preserving. Together
this implies that all the parameters moved by σ′ are moved to parameters.
But then, item 3 to be proven immediately carries over from the induction
hypothesis to the induction step. ut

Lemma 4.11 (Split Applicability) Let Λ ` Ψ, C be a sequent with a non-
contradictory context Λ, where C contains at least two literals. If all context
unifiers of C against Λ have a non-empty remainder, and σ is an admissible
context unifier of C against Λ such that Λ produces L, for every remainder
literal L of σ, then Split is applicable to Λ ` Ψ, C with selected clause C and
context unifier σ.

Proof. Suppose the condition of the lemma statement holds. The proof of the
conclusion consists of two parts: in a first part, we will show that there is a
remainder literal that is not contradictory with Λ. Then, in a second part we

will show that for each remainder literal L, L
sko

is not contradictory with Λ.
This will immediately give a proof that Split is applicable to Λ ` Ψ, C with
selected clause C, context unifier σ and that mentioned remainder literal. Let
C = L1∨· · ·∨Lm∨Lm+1∨· · ·∨Lm, where 0 ≤ m ≤ n (and n ≥ 2), where the
remainder D is (Lm+1∨ · · · ∨Lm)σ. Suppose, to the contrary of the statement
for the first part that every literal Ljσ, for j = m + 1, . . . , n is contradictory
with Λ. Since σ is admissible, all prerequisites to apply Lemma 8.21 to D
are satisfied. By this lemma then, there are fresh literals Km+1, . . . , Kn ∈'
Λ and there is a simultaneous unifier δ of {Km+1, Lm+1σ}, . . . , {Kn, Lnσ}
(Lemma 8.21, item 1) such that for all j = m + 1, . . . , n, it holds Dom(δ) ∩
Par(Lj) = ∅ (item 2), and (Par(Kj))δ ⊆ V (item 3). We may assume that
δ is restricted so that each parameter moved by it occurs only in some literal
Kj, where m+ 1 ≤ j ≤ n. Otherwise restrict δ respectively by excluding from
its domain all the parameters that do not occur in any Kj, and items 1–3 will
still hold. In particular, δ will still be a simultaneous unifier as stated in item
1, because the unrestricted δ does not move the parameters in Lj anyway.
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In the sequel let the index j always ranges from m+ 1, . . . , n.

Since each literal Kj is fresh, we may assume that σ does not modify Kj, i.e.
Kj = Kjσ holds. Therefore, δ is a simultaneous unifier of {Km+1σ, Lm+1σ},
. . . , {Knσ, Lnσ}. Equivalently, σδ is a simultaneous unifier of {Km+1, Lm+1},
. . . , {Kn, Ln}.

Furthermore, from (Par(Kj))δ ⊆ V and Kj = Kjσ it follows (Par(Kj))σδ ⊆
V .

We are given that σ is an (admissible) context unifier. This means in particular
that σ is a simultaneous unifier of {K1, L1}, . . . , {Km, Lm}. Trivially, σδ is a
simultaneous unifier of these literals as well.

Above we assumed that δ is restricted so that each parameter moved by it
occurs in some literal Kj, where m+ 1 ≤ j ≤ n. Since each literal Kj is fresh,
δ will not move any parameter in any literal Kiσ, for all i = 1, . . . ,m. Since σ
is a context unifier, we know (Par(Ki))σ ⊆ V , for all i = 1, . . . ,m. Together
this implies (Par(Ki))σδ ⊆ V .

Summing up, there is a simultaneous unifier σδ (of {K1, L1}, . . . , {Kn, Ln}
– we will omit in the sequel the mentioning of these pairs if just these are
meant) such that (Par(Ki))σδ ⊆ V , for all i = 1, . . . , n.

However, there is no guarantee yet that σδ will be a simultaneous most general
unifier. We will show next that a simultaneous most general unifier exists,
that, moreover will be a context unifier of C against Λ with empty remainder,
contradicting the lemma statement.

Since σδ is a simultaneous unifier, there is a most general simultaneous unifier
σ′ and a substitution δ′ such that σ′δ′ = σδ. The same arguments as in the
proof of the Lifting Lemma, Lemma 4.9, can be applied to show this. However,
there is no guarantee that (Par(Ki))σ

′ ⊆ V , for all i = 1, . . . , n. But it must
hold (Par(Ki))σ

′ ⊆ X ∪ V , for all i = 1, . . . , n, because otherwise there
would be a parameter u in some literal Ki, where 1 ≤ i ≤ n and that would
be moved to a term uσ′ /∈ X ∪ V , which implies uσ′δ′ /∈ V . However, we know
uσ′δ′ = uσδ ∈ V .

Let x1, . . . , xk be all the variables in (Par(K1))σ′ ∪ · · · ∪ (Par(Kn))σ′ and
define the renaming

ρ = {x1 7→ u1, . . . , xk 7→ uk, u1 7→ x1, . . . , uk 7→ xk} ,

where u1, . . . , uk are fresh parameters. By this construction, each variable in
(Par(Ki))σ

′ is moved to a parameter, and because u1, . . . , uk are fresh, each
parameter in (Par(Ki))σ

′ is moved to itself, for all i = 1, . . . , n. This proves
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(Par(Ki))σ
′ρ ⊆ V , for all i = 1, . . . , n. Furthermore, with σ′ being a most

general simultaneous unifier and ρ being a renaming, σ′ρ is a most general
simultaneous unifier, too. In other words, σ′ρ is a context unifier of C against
Λ with empty remainder. Since this plainly contradicts what is given in the
lemma statement, the assumption that every literal Ljσ, for j = m+ 1, . . . , n,
is contradictory with Λ must be withdrawn. Hence, as claimed, there is a
remainder literal Lσ that is not contradictory with Λ. This completes the first
part of the proof.

For the second part, let L ∈ D be any remainder literal. We have to show

that L
sko

is not contradictory with Λ. Suppose to the contrary that L
sko

is
contradictory with Λ. Then, there is a K ∈' Λ and a p-preserving substitution

σ such that L
sko
σ = Kσ.

Since σ is p-preserving, σ|V exists and is a renaming on V . Therefore, also
ρ := (σ|V )−1 exists, and so u = uσρ for any parameter u follows. Because

of Skolemization, L
sko

is variable-free. This implies L
sko

= L
sko
σρ, and with

L
sko
σ = Kσ, it follows easily L

sko
= Kσρ.

Let µ = {x1 7→ a1, . . . , xn 7→ an} be the Skolemizing substitution used, for
some n ≥ 0. Now, because the constants a1, . . . , an are fresh, none of them
will occur in L. This means, we can consider the “substitution” µ′ = {a1 7→
x1, . . . , an 7→ xn} and it will hold L = Lskoµ′.

The substitution σρ is p-preserving, because both σ and ρ are. We may assume
that all the variables moved by σρ are just the variables of K, and each variable

in K is moved by σρ to some Skolem constant ai, so that L
sko

= Kσρ holds.
It follows that the substitution σρµ′ is a renaming on V and each variable
in K is moved to some variable xi (not neccessarily in an injective way).

More formally, K ≥ Kσρµ′ holds. Now, from L
sko

= Kσρ it follows trivially

L
sko
µ′ = Kσρµ′, and with L = Lskoµ′ we get L = Kσρµ′. With K ≥ Kσρµ′ it

follows K ≥ L. With K ∈' Λ and Lemma 8.6, K produces L in Λ and Λ does
not produce L. This contradicts the lemma statement according to which Λ

does produce L. Therefore, the assumption that L
sko

is contradictory with Λ
is false, and so no remainder literal is contradictory with Λ. Since this is all
that remained to be proven, the proof is complete now. ut

Lemma 4.12 (Assert Applicability) Let Λ ` Ψ, L be a sequent with a
non-contradictory context Λ. If all context unifiers of L against Λ have a non-
empty remainder and there is an instance Lσ of L such that Λ produces Lσ,
then Assert is applicable to Λ ` Ψ, L with selected clause L, selected literal
the empty substitution as context unifier.

Proof. Suppose that all context unifiers of L against Λ have a non-empty
remainder and there is an instance Lσ of L such that Λ produces Lσ. To
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show that Assert is applicable as stated, we first have to show that there is no
literal K ∈ Λ such that K ≥ L. Suppose there were such a literal K. Recall
that the clauses in the sequents are parameter-free. With L being therefore
parameter-free, it follows easily that L ≥ Lσ. Together with K ≥ L conclude
K ≥ Lσ. But then, Lemma 8.6 can be applied to conclude that Λ produces
Lσ but Λ does not produce Lσ plainly contradicting to what was supposed.
Therefore, there is no literal K ∈ Λ such that K ≥ L.

Next, we have to show that L is not contradictory with Λ. Suppose, to the
contrary, there is a literal K ∈' Λ and a p-preserving substitution δ such that
Lδ = Kδ. Since δ is a unifier for L and K, there is a most general unifier σ′

and a substitution δ′ such that σ′δ′ = δ. The same arguments as in the proof of
the Lifting Lemma, Lemma 4.9, can be applied to show this. However, there is
no guarantee that (Par(K))σ′ ⊆ V . But it must hold (Par(K))σ′ ⊆ X ∪ V ,
because otherwise there would be a parameter u inK that would be moved to a
term uσ′ /∈ X ∪ V , which implies uσ′δ′ /∈ V . However, we know uσ′δ′ = uδ ∈ V
since δ is p-preserving.

Let x1, . . . , xk be all the variables in (Par(K))σ′ and define the renaming

ρ = {x1 7→ u1, . . . , xk 7→ uk, u1 7→ x1, . . . , uk 7→ xk} ,

where u1, . . . , uk are fresh parameters. By this construction, each variable in
(Par(K))σ′ is moved to a parameter, and because u1, . . . , uk are fresh, each
parameter in (Par(K))σ′ is moved to itself. This proves (Par(K))σ′ρ ⊆ V .
Furthermore, with σ′ being a most general unifier and ρ being a renaming,
σ′ρ is a most general unifier, too. In other words, σ′ρ is a context unifier of L
against Λ with an empty remainder. This, however, plainly contradicts what
was supposed above.

Finally, in reference to the definition of the Assert inference rule, the clause
L to be selected can also be written as 2 ∨ L. Because, trivially, the empty
substitution is a context unifier of 2 against any context with an empty re-
mainder, this concludes the proof that Assert is applicable as stated. ut

Lemma 4.15 (Close Applicability) Let C ∈ ΦB and i < κ such that Close
is applicable to Λi ` Φi with selected clause C. Then, for some j ≥ i with
j ≤ κ, Close is applicable to Λj ` Φj with selected clause C and a context
unifier σ such that K ∈' ΛB for each context literal K of σ.

Proof. Assume that Close is applicable to Λi ` Φi with selected clause C. We
will directly prove the conclusion.

Suppose that C is of the form L1 ∨ · · · ∨ Ln. Let σ′ be the context unifier of
the considered Close rule application and let K ′1, . . . , K

′
n ∈' Λi be the context

literals of σ′. With Lemma 8.15 it follows there are literals K1, . . . , Kn ∈' ΛB
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such that Kk ≥ K ′k, for k = 1, . . . , n. With C ∈ ΦB and K1, . . . , Kn ∈ ΛB it
follows easily from the compactness property that there is an j ≥ i with j < κ
such that C ∈ Φj and Kk ∈' Λj, for k = 1, . . . , n.

With this, it is enough to show that there is a context unifier σ of C against
Λj with an empty remainder and context literals K1, . . . , Kn. Without loss
of generality assume that K1, . . . , Kn have been chosen as fresh p-variants of
literals in Λj. In the sequel let the index k allways ranges from 1, . . . , n.

From the existence of the context unifier σ′ and the fact Kk ≥ K ′k it follows
there is a most general simultaneous unifier σ′′ of {K1, L1}, . . . , {Kn, Ln}. The
same arguments as in the proof of the Lifting Lemma, Lemma 4.9, can be
applied to show this. However, there is no guarantee that (Par(Kk))σ

′′ ⊆ V .
Using the same construction as in the proof of Lemma 4.11, it can be shown
that there is a renaming substitution ρ such that (Par(Kk))σ

′′ρ ⊆ V . Setting
σ := σ′′ρ thus gives the desired substitution. ut
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