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We introduce a notion of real-valued reward testing for pialistic processes by extending the tra-
ditional nonnegative-reward testing with negative rewgatd this richer testing framework, the may-
and must preorders turn out to be inverses. We show that fMergent processes with finitely many
states and transitions, but not in the presence of divemyehe real-reward must-testing preorder
coincides with the nonnegative-reward must-testing gleorTo prove this coincidence we charac-
terise the usual resolution-based testing in terms of trakuransitions of processes, without having
to involve policies, adversaries, schedulers, resolstmmsimilar structures that are external to the
process under investigation. This requires establistiagontinuity of our function for calculating
testing outcomes.

1 Introduction

Extending classical testing semantics [1, 9] to a settinghiith probability and nondeterminism co-exist
was initiated in[[18]. The application of a test to a proce®ddg a set of probabilities for reaching a
success state. Traditionally, this set of result probizdslis obtained byesolving[[7] a system into a non-
empty set of deterministic but probabilistic systems, eaginesenting a possible probabilistic run of the
original system; concepts suchmalicy [14], adversanf15], schedulef16] andresolution[7] have been
used for this purposeReward testingvas introduced in[10] for concurrency, though earlier piered

in [11] for sequential programs; here the success statetabetled by nonnegative real numbers—
rewards—to indicate degrees of success, and reaching a succesactaimulates the associated reward.
In [17] an infinite set of success actions is used to reportess; and the testing outcomes are vectors
of probabilities of performing these success actions. Gaoegbto [10] this amounts to distinguishing
different qualities of success, rather than different dtias.

In [18] and [17], both tests and testees are nondeternminmbbabilistic processes, whereas|[10]
allows nonprobabilistic tests only, thereby obtaining ssléiscriminating form of testing. In[7] we
strengthened reward testing by also allowing probalilissts. Taking reward testing in this form we
showed that for finitary processes, i.e. finite-state andefinbranching processes, all three modes of
testing lead to the same testing preorders. Thus, veciaebgesting is no more powerful thanalar
testing that employs only one success action, and likeveisand testing is no more powerful than the
special case of reward testing in which all rewards afb 1.
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1in spite of this therés a difference in power between the notions of testing fronj g&l [17], but this is an issue that is
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Figure 1: Two processes with divergence and a test

In certain situations it is natural to introduce negatiweagls; this is the case, for instance, in the
theory of Markov Decision Processés [14]. Intuitively, wauld understand negative rewards as costs,
while positive rewards are often viewed as benefits or pradiisider for instance the (nonprobabilistic)
processes; anday of Figurel. Hera represents the action of making an investment. Assumirtdgttba
investment is made by bidding for some commodity, thaction represents an unsuccessful bid — if this
happens one simply tries again. N@wepresents the action of reaping the benefits of this investm
Wheresqg; models a process in which making the investment is alwaysweld by an opportunity to
reap the benefits, the procegsallows, nondeterministically, for the possibility thaetimvestment is
unsuccessful, so tha does not always lead to a state whéres enabled. The tedt which will be
explained later, allows us to give a negative reward to a@ie-its cost—and a positive reward ko

This leads to the questioif:both negative- and positive rewards are allowed, how wdhé original
reward-testing semantics chan&’.We refer to the more relaxed form of testing, using positind a
negative rewards, asal-reward testingand the original one (frond [10], but with probabilistic t&sts in
[7]) asnonnegative-reward testing

The power of real-reward testing is illustrated in FigureThe two (nonprobabilistic) processes in
the left- and central diagrams are equivalent under (pribbtid) may- as well as must testing; the
loops in the initial states cause both processes to fail anyrivial must test. Yet, if a reward of1 is
associated with performing the actiapand a reward of 2 with the subsequent performandg ibturns
out that in the first process the net reward is either 0, if teegss remains stuck in its initial state, or
positive, whereas running the second process may yieldsa 8&e Example 3.8 for details of how these
rewards are assigned, and how net rewards are associatetheiaipplication of tests such asThis
example shows that for processes that may exhibit diveegeral-reward testing is more discriminating
than nonnegative-reward testing, or other forms of prdisdioi testing. It also illustrates that the extra
power is relevant in applications.

As remarked, in[[7] we established that for finitary procestte nonnegative-reward must-testing
preorder Cnrmusy coincides with the probabilistic must-testing preordgpusy, and likewise for the

entirely orthogonal to the distinction between scalaritgstreward testing and vector-based testing[In [17] iheséxecution
of a succesactionthat constitutes success, whereasin[L, 9, 18, 10] it ihirg@ successtate(even though typically success
actions are used to identify those states).[In [2, Ex 5.3] heved that state-based testing is (slightly) more powetHah
action-based testing. The results presenteflin [7] abeutdincidence of scalar, reward, and vector-based testemygers
pertain to action-based version of each, but in the cormugiis observed that the same coincidence could be obtdared
their state-based versions. In the current paper we stistate-based testing.

20One might suspect no change at all, for any assignment ofdevieom the interval—1, 4+-1] can be converted into a non-
negative assignment simply by adding 1 to all of them. Butwwald not preserve the testing order in the case of zeroeoues
that resulted from a process’s failing to reach any sucdess at all: those zeroes would remain zero.
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The symbok between two relations means that they coincide for finitaryergent processes.

Figure 2: The relationship of different testing preorders.

may preorders. The main result of this paper is that resttitt finitary convergent processes, the real-
reward must preorder,, must coincides with the nonnegative-reward must preorderforeany finitary
convergent processes, _
ACrmustl  iff AChmustl (1)

Here, as we shall see, convergence is the natural gendmaligd the standard concept for nonproba-
bilistic processes to the probabilistic setting; in parae it rules out the processes of Figlie 1.

There is also a surprisingly simple proof of the fact thatrial-reward testing the may- and must
preorders are the inverse of each other, i.e. that for armyegeeg\ andr’,

A EI’T may r Iff r El’f mustA- (2)

This pleasing symmetry does not hold for the more restactiennegative-reward (or scalar) testing.
Moreover, the analogy of (1) for the may preorder does notl,hiok. C,r nay does not coincide with
Cnrmay (0.V. the end of Sectidd 8).

Although it is easy to see that ihl(1) the former implies théelato prove the opposite is far from
trivial, see more discussion in Sectibh 7. We employ a chiarsation ofCpmyst from [2,[3]. Failure
simulationis a well-known behavioural preorder for nondeterminigiocesses [8]; in‘[2] we showed
that it could be adapted to characterise the probabilististrtesting preorder pmys; and in [3] this work
was generalised from finite to finitary processes. This wewlthe generalisation of the standard notion
of (weak) derivations in state-based systems [13], to fhitibic processes, i.e. probability distributions.
By capitalising on this novel notion of derivation betwedstiibutions we can show that the failure
simulation preordef_rs is contained InC,, nust Convergence is essential here, even though it is not
needed to establish thais is contained i, must Recall that=,, nstis defined usingesolutions the
key to proving this containment, the heart of the paper, @sviiig that certain derivations, which we call
extreme derivationsare essentially the same @solutions Combining this with the results froml[7]
and [3] mentioned above leads to our required resultEhatystis included inC,, musy as far as finitary
convergent processes are concerned. Consequently, tasgsall the relations of Figuré 2 collapse into
one.

The rest of this paper is organised as follows. We start bgllieg notation for probabilistic labelled
transition systems. In Sectidd 3 we review the resolutiaseld testing approach and show that the
real-reward may preorder is simply the inverse of the realard must preorder. Moreover, using the
example of Figuréll, we show that in the presence of diveméime inclusion of=; must in Sarmust IS
proper. In Sectiof]4 we recall the notions of derivation drelfailure simulation preorder. In Section
we show that resolutions can be seen as certain kinds ofatieris. Then in Sectioh] 6 we show
for finitary convergent processes that real-reward musinggsoincides with nonnegative-reward must
testing. We explain in Sectidd 7 why the proof of the coinnitkeresult cannot easily be simplified, and
then conclude in Sectidd 8.

Besides the related work already mentioned above, many sthdies on probabilistic testing and
simulation semantics have appeared in the literature. @heyeviewed in[6,12]. An extended abstract
of the current work has appeared|(ds [5]. All the proofs omhitheere are now detailed. Sectidn 7 is newly
added to explain the subtle difference betwegnmustandCprmust
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2 Probabilistic Processes

A (discrete) probabilitysubdistributionover a seSis a functionA : S— [0, 1] with Y5 sA(s) < 1; the
supportof such aA is [A] := {s€ S| A(s) > 0}, and itsmass|A| is ¥ sc[a1A(S). A subdistribution is a
(total, or full) distributionif |A| = 1. The point distributiors assigns probability 1 teand 0 to all other
elements ofS, so that[s] = {s}. With Zs.(S) we denote the set of subdistributions o@rand with
2(S) its subset of full distributions.

Let {Ax | k € K} be a set of subdistributions, possibly infinite. THap A is the real-valued func-
tion in S— R defined by(T ek Ak)(S) = Skek Ak(S). This is a partial operation on subdistributions
because for some stad¢he sum ofAy(s) might exceed 1. If the index set is finite, séd..n}, we often
write A + ... +An. For p a real number fronj0, 1] we usep-A to denote the subdistribution given by
(p-A)(s) := p-A(s). Finally we usee to denote the everywhere-zero subdistribution that theshgpty
support. These operations on subdistributions do not Iseadapt themselves to distributions; yet if
> kek Pk =1 for somepy > 0, and the\ are distributions, then so By k pk-Ax.

The expected valu§ s.sA(s)- f(s) over a subdistributiodd of a bounded nonnegative functidn
to the reals or tuples of them is written EX), and the image of a subdistributidnthrough a func-
tion f : S— T, for some sefl, is written Img (A) — the latter is the subdistribution ovérgiven by
Img¢ (A)(t) := 3 (st A(S) foreacht € T.

Definition 2.1 A probabilistic labelled transition syste(pLTS) is a triple(S Act,—), where
(i) Sis a set of states,
(ii) Actis a set of visible actions,

(iii) relation — is a subset 08x Act; x Z(9).

HereAct; denotesAct U {7}, wheret ¢ Act is the invisible- or internal action.

A (nonprobabilistic) labelled transition system (LTS) mag viewed as a degenerate pLTS — one in
which only point distributions are used. As with LTSs, wetes %5 A for (s,a,A) € —, as well as
s-% for 3A:s-% A ands— for Ja: s %, with s -24 ands-—4 representing their negations.

We graphically depict pLTSs as follows. States are repteseny nodes of the forrma and distribu-
tions by nodes of the form. For any states and distributionA with s -9+ A we draw an edge frorato
A, labelled witha. For any distributiomA and statesin [A], the support of\, we draw an edge from
to s, labelled withA(s). We leave out point-distributions, diverting an incomirdge to the unique state
in its support. See e.g. Figure 4 in the next section for sorample pLTSs.

In this paper gprobabilistic) proceswill simply be a distribution over the state set of a pLTS. A
pLTS is deterministicif for any states and labela there is at most one distributioh with s -2+ A. It
is finitely branchingif the set{A |s-% A, a €L} is finite for all statess; if moreoverSis finite, then
the pLTS isfinitary. A subdistributionA over the state s& of an arbitrary pLTS idinitary if restricting
Sto the states reachable frafnin the graphical representation of the pLTS yields a finisuip-pLTS.
Similarly, a subdistributior is finite if restricting S to the states reachable frofnyields a finitary
sub-pLTS without loops.

3 Testing probabilistic processes

A testis a finite distribution over the state set of a pLTS haviag,; U Q as its set of transition labels,
whereQ is a set of frestsuccessactions, not already ict;, introduced specifically to report testing
outcome§ For simplicity we may assume a fixed pLTS of processes—ouiteeapply to any choice

SFor vector-basedesting we normally tak€ to be countably infinite[17]. This way we have an unboundeupluof
success actions for building tests, of course without ety to use them allScalartesting is obtained by taking| = 1.
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Figure 3: Synchronous parallel composition between texigpaocesses

of such a pLTS—and a fixed pLTS of tests. Since the power ohgestepends on the expressivity of
the pLTS of tests—in particular certain types of tests amessary for our results—Ilet us just postulate
that this pLTS is sufficiently expressive for our purposeserdxample that it can be used to interpret
all processes from the languag€SP, as in our previous papefs [6, 2, E].

Although we use succesxctions they are used merely to mark certain states as success, state
namely the sources of transitions labelled by successractibor this reason we systematically ignore
the distributions that can be reached after a success attlermmpose two requirements on all states in
a pLTS of tests, namely

(A) if t -2 andt -2 with wy, wp € Q thenw, = wp. uniqueness
(B) if t - with w € Q andt -2 A with o € Act; thenu - for all u € [A]. no w-disabling

The first condition says that a success state can have onessuicentity only, whereas the second
condition is a slight weakening of the requirement froml [fi@t success states must be end states; it
allows further progress from am-success state, for somec Q, but w must remain enable.

To apply test® to process\ we form a parallel compositio®||A in which all visible actions ofA
must synchronise wit®. Those synchronisations are immediately renamediirgo that the resulting
composition is a process whose only possible actions arelémeents of); := QU {r}. Formally, if
(P,Act,—p) and(T,ActUQ, —7) are the pLTSs of processes and tests, then the pLTS of ajmlisaf
tests to processes (€,Q,—), with C = {t||p|te T A pe P} and— the transition relation generated by
the rules in Fig.B. Here ® € 2(T) andA € 2(P), then®||A is the distribution given by®||A)(t]|p) :=
O(t) - A(p). The resulting pLTS also satisfies (A), (B) above; this wontd be the case if we had
strengthened (B) to require that success states must béates. s

We will define the resulte7 (©,A) of applying the test to the process to be a set of testing
outcomes, exactly one of which results from each resolufdhe choices if®||A. Eachtesting outcome
is anQ-tuple of real numbers in the interval [0,1], i.e. a functonQ — [0, 1], and itsw-component
o(w), for w € Q, gives the probability that the resolution in question wélhch arw-success stat®one
in which the success actianis possible.

Due to the presence of nondeterminism in pLTSs, we need aanisth to reduce a nondeterministic
structure into a set of deterministic structures, each oflwtletermines a single possible outcome. Here
we adapt the notion aksolution defined in[[7] for probabilistic automata, to pLTSs.

Definition 3.1 [Resolution] A resolutionof a subdistributior®® € Zs,(S) in a pLTS(S Q, —) is a triple
(RN, —R) Where(R,Q, —g) is a deterministic pLTS and € Zs,R), such that there existsrasolving
function f: R— Ssatisfying

(i) Img¢(A) = @
(i) if r SrA for o € Q; thenf(r) % Img; (A)

(iii) if f(r) - for a € Q; thenr %g.

4In [B] tests are allowed to be finitary, but if two processes laehaviourally different they can be distinguished by some
characteristic tests which are always finite. Thereforeyéisults in[[3] still hold if tests are required to be finite vee do here.
5This simplifies our treatment of test but, as can be seen frppeAdix A of [7], itis not a heavy restriction.
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Figure 4: Testing the process

The reader is referred to Section 2 of [7] for a detailed dismn of the concept of resolution, and the
manner in which a resolution represents a run of a proceggrircular in a resolution states #are
allowed to be resolved into distributions, and computasteps can b@robabilistically interpolated
Our resolutions match the results of applying a scheduléefised in[16].

We now explain how to associate an outcome with a particelolution, which in turn will associate
a set of outcomes with a subdistribution in a pLTS. Given ameinistic pLTS(R,Q,—r) consider the
functional.Z : (R— [0,1]%) — (R— [0,1]%?) defined by

1 if r <
F(Q(r)(w):=40 if r 94 andr 24 (3)
Expa(9)(w) if r %% andr 5 A.

We view the unit interval0O, 1] ordered in the standard manner as a complete lattice; tHis@s the
structure of a complete lattice on the prod{@&t]? and in turn on the set of functio®®— [0,1]?. The
functional .7 is easily seen to be monotonic and therefore has a least foiet prhich we denote by
ViRa,—g); this is abbreviated t& when the deterministic pLTS in question is understood. itinaly
Expr(Vira,—g)) is the result of executing the resolutidoR, A, —r) starting from the initial distribution
A, a vector of probabilities. From Definitidn 3.1 we see thag@meral a distribution gives rise to a
non-empty set of resolutions. Collecting all of the possitdsults of executing them we get

A (®) = {EXpr(VirRa —)) | (RA,—R) is aresolution ofb } . 4

This notation is most often used in calculating the resultgpplying a test to a process. To emphasise
this, we will sometimes use the notatiori(©,A) for <7 (O]|A).

Example 3.2 Consider the procesg depicted in Figuréld(a). When we apply the teskepicted in
Figure[4(b) to it we get the proces$y; depicted in Figur&l4(c). This process is already detertiinis
hence has essentially only one resolution: itself. Moretweoutcome E%(V) = V(t||q1) associated
with it is the least solution of the equatiaf(t||q;) = 2 - V(t||q) + 3@ whered : Q — [0,1] is the Q-
tuple with @ (w) = 1 and @ (') = 0 for all ' # w. In fact this equation has a unique solutiorjon],
namely @. Thus«/ (t,01) = {3}. O
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Figure 5: Testing the procegs

Example 3.3 Consider the process and the application of the tekto it, as outlined in Figurgl5. For
eachk > 1 the process||g, has a resolutioR¢, A, —r,) such that Exg(V) = (1—51;)3; intuitively it
goes around the loofk — 1) times before at last taking the right handction. Thuse/ (T, Tz) contains
(1- 51;)3 for everyk > 1. But it also containﬁ, because of the resolution which takes the left hand
T-move every time. Thus? (f,0;) includes the set

{(1-)H)d, 1-2)8,....1-H,.... &}
As resolutions allow any interpolation between the twtvansitions from state;, <7 (T, ) is actually
the convex closure of the above set. O

There are two standard methods for comparing two sets ofenidaitcomes:

01 <Ho Oz if for every 0, € O; there exists some, € O, such thab; < 0,
01 <sm0Oy if for every 0, € O, there exists some; € O; such thab; < 0

This gives us our definition of the probabilistic may- and triesting preorders; they are decorated with
- for the repertoire of testing actions they employ.

Definition 3.4 [Probabilistic testing preorders]
(i) AC8nayl if for every Q-test®, 7 (0,A) <po <7 (O,I).
(i) ATl if for every Q-test, 7 (0,A) <sm«/(O,I).

—=pmus
These preorders are abbreviatedtQ pmay " andA Cpmust” When|Q|= 1.

In [[7] we established that for finitary processzagnay coincides withCpmay and ggmustwith Epmust
for any choice ofQ. We also defined the reward-testing preorders in terms ofrehanism set up so
far. The idea is to associate with each success aatierQ2 a reward, which is a nonnegative number in
the unit interval[0, 1]; and then a run of a probabilistic process in parallel witest yields an expected
reward accumulated by those states which can enable suaxtésss. A reward tupla € [0,1]¢ is used
to assign rewardh(w) to success actiow, for eachw € Q. Due to the presence of nondeterminism,
the application of a tedb to a procesg\ produces a set of expected rewards. Two sets of rewards
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can be compared by examining their suprema/infima; thissgisetwo methods of testing called reward
may/must testing. I 7] all rewards are required to be ngatiee, so we refer to that approach of testing
asnonnegative-reward testindf we also allow negative rewards, which intuitively canuelerstood as
costs, then we obtain an approach of testing catbetireward testing Technically, we simply let reward
tuplesh range over the sét-1,1]%. If o € [0,1]%, we use the dot-produtt-0 = 5 ,,cq () - o(w). It
can apply to a séd C [0,1]? so thath-O = {h-0| 0 € O}. LetA C [-1,1]. We use the notatiop|A for
the supremum of se&¥, and[ | A for the infimum.

Definition 3.5 [Reward testing preorders]

(i) A CRmayl if for every Q-test® and nonnegative-reward tughes [0, 1)<,
Llh-&7(©,A) <[ |h -/ (O,I).

(i) AT sl if for every Q-test® and nonnegative-reward tughec [0, 1],
[1h-27(©,A) <[]h-</(O,I).

(iify A Cfmayl if for every Q-test® and real-reward tuple € [—1,1]?,
Lh-27(0,A) < | |h- 2/ (O,T).

(iv) ARl if for every Q-test® and real-reward tuple € [—1,1]%,
[1h-«7(©,A) <[]h-</(O,T).

This time we drop the superscri@iff Q is countably infinite.

It is shown in Corollary 1 of[[7] that nonnegative-rewardtieg is equally powerful as probabilistic
testing.

Theorem 3.6 [7]For any finitary processesandr,
(i) AChrmayl ifand only if A Cpmayl.

In this paper we focus on the real-reward testing preordgrsay and =y musy By comparing them with
the nonnegative reward testing preordegmay and Cprmust Although these two nonnegative-reward
testing preorders are in general incomparable, we havédéareial-reward testing preorders:

Theorem 3.7 For any processes andl, it holds thatA Ty, may I if and only if I Cyy myst A

Proof: We first notice that for any nonempty s&t_ [0,1]° and any reward tupla € [-1,1]?,

LIh-A = ([ ](=h-A) 5)

where—h is the negation o, i.e. (—h)(w) = —(h(w)) for any w € Q. We consider the “if” direction;
the “only if” direction is similar. Let® be anyQ-test anch be any real reward tuple {r-1,1]%. Clearly,
—his also a real reward tuple. SUPPASE r mustd, then

[1(-h-«@©,r) < [](-h- «©,8) (6)
Therefore, we can infer that

LIh-27(©,0)

Al
|
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Our next task is to comparg, must With Crmust The former is included in the latter, which directly

follows from Definition[3.5. Surprisingly, it turns out thédr finitary convergent processes the latter is
also included in the former, thus establishing that the twaoplers are in fact the same. The rest of
the paper is devoted to proving this result. However, we $ingiw that this result does not extend to
divergent processes.

Example 3.8 Consider the process&s and @, depicted in Figuréll. Using the characterisations of
Cpmay @and Cpmust in [3], it is easy to see that these processes cannot beglistred by probabilistic
may- and must testing, and hence not by nonnegative-reweatithg either. However, Iétbe the test in
the right diagram of Figurel 1 that first synchronises on thima@, and then with probabilit)% reaches
a state in which a reward of2 is allocated, and with the remaining probabi@)synchronises with the
actionb and reaches a state that yields a reward of 4. Thus the tesbs1ipo success actiorts; and
wy, and we use the reward tugtewith h(cw; ) = —2 andh(w;,) = 4. Then the resolution df; that does
not involve thet-loop contributes the value 2- % +4-1=-14+2=1tothe seh- o/ (f,q;), whereas
the resolution that only involves theloop contributes the value 0. Due to interpolatibn o/ (t,qz) is
in fact the entire interval0,1]. On the other hand, the resolution corresponding toathbeanch ofqy
contributes the value-1 andh- .o/ (f,qz) = [—1,1]. Thus[ |h- & (,th) =0> —1=[]h- &/ (,02), and
henceqy Zir mustTe- O

4 Failure simulations

In this section we explain the characterisation of prolistitltesting from([2, 3]; it depends on a general-
isation of failure simulations [8] to the probabilistic 8eg. The key ingredient is that of weak derivations
for distributions. To deal with infinite (but finitary) prosges, we need to employ the weak derivations
of [3] rather than those of [2].

In a pLTS actions are performed only by states, in that astame given by relations from states to
distributions. But processes in general correspond taloligions over states, so in order to define what
it means for a process to perform an action, we neelifittdhese relations so that they also apply to
distributions. In fact we will find it convenient to lift theto subdistributions.

Definition 4.1 Let(SL,—) be apLTS and? C Sx Zs,(S) be arelation from states to subdistributions.
ThenZ C ZsudS) x ZsurS) is the smallest relation that satisfies:
() sZ AimpliessZ A, and
(i) (Linearity) [j Z A for i€l implies (Siq pi-Ti) Z (Sic pi-A) for any pi€[0,1] (i€l) with
Yiel Bi < 1, wherel is a countable set.

An application of this notion is when the relation-i€+ for a € Act;; in that case we also write?s

for -&5. Thus, as source of a relatief+ we now also allow distributions, and even subdistributiofs

subtlety of this approach is that for any actienwe haves < ¢ simply by takingl =0 or ¥, pi=0

in Definition[4.1. That turns out to make especially useful for modelling the “chaotic” aspects of

divergence in[[B], in particular that in the must-case aidjgat process can mimic any other.
Definition[4.1 is very similar to our previous definition [n][2lthough there it applied only to (full)

distributions:

Lemma 4.2 I Z Aif and only if

(i) T =73ic pi-S, wherel is an index set anl;¢, p; <1,

(i) For eachi €1 there is a subdistributiof; such that Z A,
(ii)) A= Yic pi-.
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Proof: Straightforward. O

An important point here is that a single state can be split ®tveral pieces: that is, the decomposition
of I"into Y| pi-S is not unique.

Definition 4.3 [Weak derivation] Suppose we have subdistributiohgh,”, Ay, for k > 0, with the fol-

lowing properties:
I prop A= AN

Ay 5 AT +AS
B D DA

Then we cally := 3* (A aweak derivativeof A, and writeA =- A’ to mean tha\ can make aveak
derivationto its derivatived'.

There is always at least one weak derivative of any subbligion (the subdistribution itself) and there
can be many.
Proposition 4.4 [Transitivity, linearity and decomposition of weak derivations [4]]
() If A= A" andA’' = A" thenA = A".
Letpj € [0,1] foriel with 3., pi < 1.
(i) If Aj= Al foralliel thenSic pi-Ai = Tic Pi-4.
(iii) If Yic pi-A = A thenA' = i pi- A for subdistributiong), such thaty = A{ for allie1.
We now use these weak derivations to define, in the standarshenaf [13], weak action relations

between derivations; these, together with the refusatliwlaﬁ% for A C Act are the key ingredients in
the definition of the failure-simulation preorder.

Definition 4.5 LetA and its variantgy’, AP AP%Stpe subdistributions in a pLT&S Act, —).

e Forac Act write A =2 A wheneverh —> AP 23 APOSt—, A/ for someAP™ and APt Extend
this toAct; by allowing as a special case thd# is simply=, i.e. including identity (rather than
requiring at least one’).

e For A C Act andse Swrite s 54 if s-9% for everya e AU {T}; write A 55 if s 5% for every
se[A].

o More generally writeh =54 if A = AP™ for someAP™ such that\P"® 55,

Definition 4.6 [Failure simulation preorder] Define < to be the largest relation i8x Zs,y(S) such
that if s <. A then

(i) whenevers=% I, for a € Acty, then there is &' € Zsu(S) with A =2 A andl™’ T 4,

(i) and wheneves =54 thenA —54.

Any relationZ C Sx Zsu4S) that satisfies the two clauses above is callddilare simulation The
failure simulation preordeErs C Zsun(S) X Zsur(S) is defined by letting Cgs T whenever there is a
A" with A = A% andl” I AL

Note that the simulating procesA, occurs at the right ok, but at the left ofCgs. The following
lemma will bee needed in Sectibh 6.
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Lemma 4.7 If I gAandll = I’ then there is a matching transitidn—>- A’ such thatl”’ < A"
Proof: I I Aimplies by Lemmad4]2that T = Z pi -5, S < A, A= Z pi - 4.
le

le
By Proposition 4.4(iii) there ar€{ € ZsuyS) for icl with § = [ andl"" =y, pi-I{. For each
i€l we infer froms <A and§ = I'{ that there is &\ € Zsuy(S) W|th A = A andlM S 4. Let
A" =Y. pi-4l. Then Definitior 4.11(2) and PropositimA(ii) yidld < A andA = A, O

The failure simulation preorder is preserved under pdretienposition with a test and it is sound and
complete for probabilistic must testing of finitary process
Theorem 4.8 [3]For finitary processe& andrl,

(i) If ACEsT then for anyQ-test®, O||A Crs O||T".

(i) ACrsT ifand only if A Cpmystl.

5 From derivations to resolutions

In this section we explain how resolutions, on which the diédims of the testing preorders in Defini-
tions[3.4 and 315 are based, can be seen as certain kindsvattiders.

Definition 5.1 [Extreme derivatives] A statesin a pLTS is calledstableif s -4, and a subdistribution
A is calledstableif every state in its support is stable. We wilie=> A’ wheneveiA —- A" andA’ is
stable, and call\’ anextremederivative ofA.

Referring to Definitio 413, we see this means that in theeexé derivation of\’ from A at every stage a
state must move on if it can, so that every stopping comporemcontain only states whichuststop:
for se [A +A;] we haves e [A;] if and now alsanly if s 4.

Lemma 5.2 [Existence and uniqueness of extreme derivativies
(i) For every subdistributios\ there exists some (stabl&) such thath = A'.
(i) In a deterministic pLTS ifA = A" andA = A" thenA’ = A,

Proof: We construct a derivation as in Definitibn 4.3 of a stabldy defining the components,, A
andA,” using induction ork. Let us assume that the subdistributiypnhas been defined; in the base case
k= 0 this is simplyA. The decomposition of thi4y into the componentd;” andA,” is carried out by
defining the former to be precisely those states which mogt k. thoses for which s -%4. Formally

A[ is determined by:

A = {Aku if %

0 otherwise

ThenA,” is given by theremainderof A, namely those states which can performaction:

A(S) {Ak() if s—Ts

0 otherwise

Note that these definitions divide the supporf\gfinto two disjoints sets, namely the supportgf and
the support ofy,”. Moreover by construction we know thaf” -+ © for some®; we letA, 1 be an
arbitrary sucho.
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This completes our construction of an extreme derivativia &efinition[4.3 and so we have estab-

lished [0).
For (i) we observe that in a deterministic pLTS the aboveaahof Ay, 1 is unique, so that the whole
derivative construction becomes unique. O

Suldistributions are essential in the definition of extremawd¢ions. Consider a statethat has only
one transition, a self-loopt - f. Then it diverges and it has a unique extreme derivatj\te empty
subdistribution. More generally, suppose a subdist@n diverges, that is there is an infinite sequence
of internal transition® -+ A; - ... A¢ - .... Then one extreme derivative ffis g, but it may have
others.

In the extreme derivativd —s A’, the subdistributiom’ may be viewed as a final result of an
execution starting i\ and dynamically resolving nondeterministic choices asetkecution proceeds.
We can tabulate the outcome of this execution in the follgwiranner:

Definition 5.3 [Outcomes]The outcome & < [0, 1] of a stable subdistributiof® is given by $b(w) =
S{®(s) | s€ [®], s-2}. For any distribution® we write ¥ () for the set of possible outcomes
{$d’ | @ = @'} via extreme derivatives.

Letpi € [0,1] foriel with 5., pi <1, and letd;, ®;, fori € I, be subdistributions. We usg¢, pi- 7 (4)
as shorthand fofyic, pi- Vi | vi € 7 (4i)}. By construction, §ic pi- @i = Yic pi-$P;. Using this, we
establish the linearity of

Lemma 5.4 Let p; € [0,1] for i el with 3, pi < 1. Then? (Jic pi-&) = Siel Pi- 7 ().

Proof: Suppose’ € 7 (Jic pi-Ai). Thenv = $& for some stablad with §, pi-A = ®. By Propo-
sition[4.4¢(jii) ® can be written ag ¢, pi-®; for subdistributions®; such thatd; — @; for all iel;
moreover, thed; must be stable. Henag := $P; € 7/ (A) and thusy = Sic; pi-Vi € Yie Pi- 7V (4).
Conversely, supposec Yic pi- 7 (4), i.e.,v = Siq pi-vi with v; € ¥/(4;). Then for alli € | there
are stable subdistributior®; with v; := $&; andAj = ;. S0 pi-A = Jic Pi- Pi by Proposi-
tion[4.4(ii). Moreovery;c, pi-®; is stable and = T pi-Vi = $5ic Pi- i € ¥ (Tiel Pi- D). O

The following two examples illustrate that this manner ofcakating outcomes often gives the same
result as when resolutions are used.

Example 5.5 (Revisiting Examplé_3]2.) The pLTS in Figuré 4(c) is detemistic and therefore from
part (@) of Lemma[5.R it follows that|/q; has a unique extreme derivative MoreoverA can be
calculaﬁto b& -1 Elg -53, which simplifies to the distributioss. Therefore, sinces§ = 3, it follows
that (t]Ja.) = {&}. This is exactly the same result as obtained in Example 3i@guesolutions. O

Example 5.6 (Revisiting Exampl&_3]3.) The application of the tesb processes; is outlined in Fig-
ure[B(c). Consider any extreme derivati¥efrom s = ||gz. Using the notation of Definitioh 4.3, it is
clear thatA; andA,” must bes ands; respectively. SimilarlyA;” andA;” must bes ands; respectively.
But s; is a nondeterministic state, having two possible transstio

(i) s1 - Ao where/Ag has suppor{sy,s;} and assigns each of them the Weiéht
(i) s —= A1 where/A; has the supporss, s}, again dividing the mass equally among them.
So there are many possibilities fag; from Definition[4.3 one sees that in faks can be of the form
p-No+(1—p)-N\1 (7)
for any choice ofp € [0, 1].
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Let us consider one possibility, an extreme one wipgsschosen to be 0; only the transition (ii) above
is used. Here\;’ is the subdistributiorsss, andA,” = € wheneverk > 2. A simple calculation shows
that in this case the extreme derivative generate is- 3% + 35 which implies thatt & € ¥ (f|[d).

Another possibility forA, is Ag, corresponding t@ = 1 in () above. Continuing this derivation
leads taA; being 3 57+ 3 - S5; thusA; = 3 -5 andAy” = - 51, Now in the generation a4 from A3
again we resolve a transition from the nondeterministitestg by choosing some arbitragy< [0,1] in
(@). Suppose we chooge=1 every time, completely ignoring transition (ii) above. efhthe extreme

derivative generated is 1
N = Z x 5

K>1
which simplifies to the distributioss. This in turn means thais € 7 (t||c).

We have seen two possible derivations of extreme derivafieens;. But there are many others. In
general whenevek,” is of the formg-s; we have to resolve the nondeterminism by choosipg=g0, 1]
in (@) above; moreover each such choice is independent.ris tout that every extreme derivatiké
of 5 is of the formq- A§ + (1—q) - A for some choice of| € [0,1], which implies that/ (f||qz) is the
convex closure of the s¢& &3, @ }.

Again this is similar to the results obtained using resohai in Examplé_313. O

Unfortunately there is not an exact agreement between wsgajutions and extreme derivations, as the
next example shows.

Example 5.7 Let p be a process that first doesaaction, to the point distributioq, and then diverges,
via thet-loop g = q. Letf be the test used in Examples]3.2 3.3. Itis easy to sedéndistribution
pl[t has a unique resolution, with expected outcomethus.«/ (t, p) = {63 }.

It turns out that||p also has a unique extreme derivative; unfortunately thisstout to bes. Since
$& = 0 this means that’(t||p) = 0; so in this case, which is actually nonprobabilistic, ¢hées a
difference between the use of resolutions and extremeadenns. O

To rectify this anomaly, we restrict our attention to a suloseLTSs.

Definition 5.8 [w-respecting] A pLTS (S Q,—) is said to bew-respectingvhen it satisfies the unique-
ness requirement (A) from Pajge 5, and®, for anyw € Q, impliess 4.

It is straightforward to modify the pLTS of applications @sts to processes into one that itcs

respecting, namely by removing all transitioss™ A for statess with s -%; we call thispruning

We denote the result of pruning the pLTS Q,—) by (S Q,[—]), and the distributior in this pruned
pLTS by[®].

Example 5.9 (Revisiting Examplé517) Lep,q andt be as in ExamplE5.7. As we have already seen,
f||p has the unique derivative But by pruning it we obtain a different extreme derivatifeive denote
the state reachable frofrwith the outgoingw-transition, in Figuré15(c), a& also, then[t||p] has the
unique extreme derivativio||g]. Since $w||q) = W, we obtain? ([t||p]) = {B}; this is exactly the
result obtained using resolutions. O

Note that pruning has no effect on Examples| 5.5 5.6, aplth€s concerned are already-
respecting. It also has no effect on the closure of the mikimulation preorder under parallel com-
position:

Lemma 5.10 [4]For finitary processea andl, if A CgsT then for anyQ-test®, [O||A] Crs [O||T].
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In the remainder of this section we show that, at leastvinespecting pLTSs, using resolutions
to calculate outcomes, as used in the definition of testingfifions[3.4 and 3]5), leads to the same
results as using extreme derivations. In the former a seetrohinistic structures are associated with
a distribution, while in the latter nondeterministic ctescare resolved dynamically as the derivation
proceeds. We start by showing that resolution-based tewstimsensitive to pruning. Let/P(®) denote
the set of vectors

{EXpA(ViRo,—r)) | (RA,—R) is a resolution of®] } .

Proposition 5.11 For any distribution® in a pLTS(S Q,—) we have that7P(®) = o7/ (P).

Proof: “2" Let (R/A,—R) be a resolution ofp. Then, following Definitior 31 (R, [A],[—Rr]) is a
resolution of[®] and, by [3), Exp\ (Vira,[=r)) = EXPA(V(RQ, 5))-

“C" Let (RA\,—R) be a resolution of®d] with resolving functionf. We construct a resolution
(R,A\,—R) of ® as a random extension OR A, —g). For every pair(s,a) € Sx Q; with s - pick
a distributionW(®%) e 2(S) such thats -2 W), Now defineR := RU (Sx N), wherel) denotes
the disjoint union operation, and obtain; from —r by adding (A) a transitior(s k) -2+ w(ki‘p for
eachke N and eactse Swith s -2+, and (B) a transition —Zs W{'""") for eachr e Rwith f(r) -
as well asf (r) -2 for somewe Q. HereW>9) € 2(Sx {k+1}) is given byW>7)(t, k+1) = W) (t)
for all te S The resolving functiorf is extended byf (s,k) := s. Using Definition 3.1 it follows that
(R,\,—g) is aresolution ofp and, again by[(3), EX(Vir o 7)) = EXPA (ViR 5r))- O

The rest of this section is devoted to showing thd{®d]) = «/P(P) for any compositior® = O||A of a
test® and procesa; this amounts to showing

{$0' | ® = @'} = {Exppr(Vira,—)) | (RA,—) is aresolution ofp }

for any distribution® in an w-respecting pLTSS, Q, —).
Let us see how an extreme derivation can be viewed as a mathdgirfamically generating a reso-
lution.

Proposition 5.12 [Resolutions from extreme derivativesl. et ® = @' in a pLTS(S Q,—). Then
there is a resolutiodR, A, —g) of ®, with resolving functionf, such thatA =g A’ for some/\’ for
which @' = Img; ().

Proof: Consider an extreme derivation & —- @' as given in Definitiori 413 where ab,’ must be
stable:
dP=dy, D=D D, DY Dy, D=3 D

By Lemma4.2®,” — dy, 1 implies that there are statgg € Sand distributionsd; . 1) € Z(S), such
that
C])k_> = Yiel, Pik-Sk; Sk —— q)i(k+1) foreachiely and @y, 1= Yiely pik-¢i(k+1) .

Dy (s) if s . Dy(s) if s .
Let d(s) := 0"‘( ) ifsﬁ' Sinced; (s) = Ok( ) ifsﬁ it follows that®;, ; = Ficy, Pic- Py, -

We will now define the resolutiofR A, —g) and the resolving functiorf. The set of stateR is
(SXN)UUen (Ik < {k}). The resolving functiorf : R— Smaps(s,k) € SxN to sand(i, k) € lxx {k} to
sk € S. The second componekibf a state counts how many transitions have fired already eagsition
in —r goes from a staté, k) or (s,k) to a distribution ove(SU lx,1) x {k+1}.

Define the subdistributions,’ € Zs,ySx{k}) and A" € Zsudlk x {k}) by A (s, k) = & (s) and
N (LK) = pik. Let A := Ag + A and A := Ag. Furthermore, for alk > 0 andicly_1, define
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Nik € Dsu (SU Ik) x{k}) by
. Dik (S
Nik(S,K) = Dy (s) and Nik(j, k) = pjk‘%ﬂti
for j€lx. We introduce the transitiong, k) ——g Njk+1) for k> 0 andi€lx. Moreover, for each state
s€ Sand labela € Act; such thas -2+, pick a transitiors %+ W, and add the transitiofs, k) -%+r Wk 1
to —g, for all ke N. HereWy,, is the distribution withW¥1(t,k+1) = W(t) for all te S Likewise,
for eachk € N, i€l and we Q such thats, -, pick a transitionsk -2+ W, and add the transition
(i,k) %R Wk, 1 to —g. This ends the definition of the resolutidR, A, —g) and the resolving function
f. By construction(R Q,—R) is a deterministic pLTS. We now check thiasatisfies the requirements
for a resolving function of Definition 3] 1.
M Mg A =AdsK+ T ALK =A(SK+ Y pic =B (9) + D (S) = Du(9)
Sk=S Sk=S
for all s€ S, so Img (Ax) = @, and in particular Img(A) = &.
(i) Let r “5r T for a€Qq. In caser = (s k) it must be thatm = Wy,; and f(r) =s -5 W =
Img; (Wk11). Likewise, in case = (i,k) anda € Q it must be thaf” = Wy,; andf(r) =sx - W=
Img; (Wk11). The remaining case is= (i,k), a = T andl" = Aj; 7). Thenf(r) = s = i),
so it suffices to show that Im@Ai) = @i for all ke N andi € I. For anyse Swe have

© Y Pik-

Sjk=S

chk ) Dik(s)

CDk(S)

Imgs (Ai)(8) = Ai($K) + 5 Al K) = P (s)+ 5 Pik- g

Sjk=S Sik=S

=®p(s)+

In cases -4 we havesj, = sfor no j € ly, so Img (Ai)(S) = P (S) = Pik(S).
In cases — we haved; (s) =0 andy s, —sPjk = Py’ (s) = Pi(s), so again Img(Aik)(S) = Pi(S).

(iii) Let f(r) -2 for a € Q;. By construction there is @1 such thar -%3g Wy, 1.
Hence(R,A\,—R) is a resolution ofp. We have:

D P Nige) (S kD) = 5 Pikc P 1)(8) = Py () = Ay (S k+1) = Awra(s k+1)
iely I€lk

i P11 (Sj(k+1))
Pik Nikr1) (1, K+1) = > Pic- Pjks1)- —le Aty

1€ i€y q)kJrl(Sj(kJrl)) j(k+1) k+l( ) + ( )

HenceAxi1 = Yiei, Pk Nik1)- Since also\ = Yic, Pik- (i,k) and (i,k) g Nigr1), Lemmal4.P
yieldsA —5r Akyr. Let N =32 AL Then by Definitiod 2B\ =g A\'.

By construction Img(Ay ) = @, for all ke N. Hence Img(A') = S oImg; (AS) = T o Py = P
|
The converse is somewhat simpler.
Proposition 5.13 [Extreme derivatives from resolutions]Let (R,A,—g) be a resolution of a subdis-
tribution ® in a pLTS(S Q, —) with resolving functionf. ThenA =g A’ implies® —s Img; (A\').

Proof: The definition of Img implies that Img(3; pi - W) = 3 pi - Img; (¥;). Furthermore¥ - W/
implies Img (W) % Img; (V). Namely, by Lemm&aZ]2Y - W implies

YW=3apS s -5 W; for eachi €| and W =S¥

which, using Definitio 3]1, entails
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Img¢ (W) = Sic pi-T(s), f(s)—=Img¢(¥;) foreachicl and Img (W)=Y pi-lmge(¥;).

Hence Img (W) & Img; (V).

Now consider any derivation &f = /\’ along the lines of Definition 41 3. By systematically apply-
ing the functionf to the component subdistributions in this derivation weayderivation Img(A) =
Img; (A'), that is® —> Img; (A\'). To show that Img(/\) is actually an extreme derivative it suffices to
show thats is stable for evens € [Img;(A’)]. But if s€ [Img;(A’)] then by definition there is some
t € [\'] such thats= f(t). SinceA =g /\ the state must be stable. The stability sfnow follows
from requirement (iii) of Definitiof 3]1. O

Our next step is to relate the outcomes extracted from extr@denivatives to those extracted from
the corresponding resolutions. This requires some aisabfsihe evaluation functioly applied tow-
respecting deterministic pLTSs. We show that the functirefined in[(B) on Padéd 6 and its least fixed
pointV are continuous with respect to the standard Euclidean enetri

Definition 5.14 [Continuous functions]An w-chain in a complete lattick is a sequence of elements
{cn | n> 0} satisfyingc; < ¢ 1. Since the lattice is completey-chains have least upper bounds; we
denote them by|,-oCn. A function f : L — L is said to be ¢)-continuous([18] if it preserves the least

upper bounds ofv-chains:
n>0 n>0
Lemma 5.15 [Exchange of supremalet functiong: N x N — R be such that it is
(i) monotonic in both of its arguments separately, so that’ impliesg(i, j) < g(i’, j) for all j, and
j < j"impliesq(i, j) <dg(i, j’) for all i, and
(i) bounded above, so that there is & R with g(i, j) < cforall i, j.

Then
lim lim g(i,j) = limlimg(,j).

i—00 j—o0 j—00i—00

Proof: Conditions (i) and (ii) guarantee the existence of all thats. Moreover, for a non-decreasing
sequence its limit and supremum agree, and both sides dwguslipremum of aly(i, j) fori,j € N. In
fact, (R, <) is a complete partial order (CPO), and it is a basic resultRO€[19] that

LI oty = L9, O
icN jelN jelN ieIN

The following technical proposition states that some raatfions satisfy the property dbunded con-
tinuity, which allows the exchange of limit and sum operations. diypla crucial role in proving the
continuity of 7.

Proposition 5.16 [Bounded continuity]Given a functionf : N x N — R which satisfies the follow-
ing conditions:

C1. f is monotonic in the second parameter, je< jo implies f(i, j1) < f(i, j2) forall i, j1, j» € N;
C2. foranyi € N, the limit limj_,,, f(i, j) exists;

C3. the partial sumss, = 51 limj_. f(i, ) are bounded, i.e. there exists some R>o such that
S, <cforalln>0;
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then it holds that

©0 00

lim £(,) = lim S £(i,]).
=ol—® | =

Proof: Letg: N x N — R be the function defined by(n, j) = S (i, ]). Itis easy to see thafis
monotonic in both arguments. Byl andC2, we have thaf (i, j) <limj_. (i, j) for anyi, j € N. So

for any j,n € N we have that
n

:if(i,j) < Y limf(i,j) < c

j—reo

according taC3. In other wordsg is bounded above. Therefore we can apply Lerhima 5.15 anchobtai

n

lim lim n fi,j) = limIlm Y f(i,]). (8)

n—o00 j~>co| Jﬁ\,oo nﬁooI

For anyj €N, the sequencég(n, j) }n>0 is nondecreasing and bounded, so its liffiit, f (i, j) exists.

That is,
Ml: f(i Zj f(i 9)

In view of C2, we have that, for any giveme N, the limit lim;_» L f (i, ) exists and

n n

Jlgrgof( = Jlggo f(i,j). (10)

By C3 the sequencéS, }n>o is bounded. Since it is also nondecreasing, it convergées tom f(i, j).
That is, . - i

lim Y lim f(i,j) = lim f(i, J). (11)

N—00 L o0 Syi—oe

Hence the left-hand side of the desired equality exists. @yhining [8){11) we obtain the result that
lim f(i,j) = lim ¥ f(i,]j). O
i;j_”" 0.0 j‘*mi; 0.0

Lemma5.17 Let R be a set andh: R — [0,1]. Furthermore, let\g < A; < --- be anw-chain of
subdistributions oveR — hereA < A’ iff A(r) <A'(r) forallr € R. Then Ex®n>0Anh = Ln>0EXpp, h.

Proof: (Exp;_,a,h)(®) = (Srer(Ln=08n)( )

- ZreRUnzo(An(
= Y rerliMne (Bn
- Iimn—>°° ZreR(An
- |_|n>0 ZreR(Aﬂ( (
(|_|n20 ZreR(An( ) h(l’))) OJ)
= (|_|n20 EXpAnh) (0‘))
In the above reasoning, Proposition 5.16 can be appliedusecae can definé : Rx N — R by
letting f(r,n) = An(r) - h(r)(w) and checking that satisfies the three conditions in Proposifion 5.16. If
Ris finite, we can extend it to a countable BeD R and requiref (r',n) = 0 for allr’ € R\Randn € N.

)) by Proposition 5.16

/N TN
-
j\_/\_/ j
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1. f satisfies conditiol©1. For anyr € Randji, j2 € N, if j1 < jo thenAj, <A;,. It follows that

f(r j1) = 8j,(r)-h(r)(w) < Aj(r)-h(r)(w) = f(r, ]2).

2. f satisfies conditior©2. For anyr € R, the sequencéAn(r) - h(r)(w) }n>0 is nondecreasing and

bounded byh(r)(w). It follows that the limit lim,_,. f(r,n) exists.

3. f satisfies conditiorC3. For any finiteR’ C R, the partial sunt g limp_,. f(r,n) is bounded

because

Srer liMpse T(1N) = liMpse Srer F(LN) = liMpse Srerr An(r) -h(r)(w)
S Iimn‘)oo zreRﬂAn(r) S Iimnﬁco zreRAn(r) S Iimn‘)oo 1 — l O

Lemma 5.18 Consider a deterministic pLT&R, Q,—). The function# defined in[(8) is continuous.
Proof: Let fp < f; <... be an increasing chain R— [0, 1]9. We need to show that

Z( ) = L Z () (12)

n>0 n>0

For anyr € R, we are in one of the following three cases:
1. r - for somew € Q. We have

7 (Unzo fn)(N(w) = 1 by (3)
|_|n20:L

= UnzoZ (fa)(N)(w)

= (Unz07 (fa))(r)(w)

and

Z (L f)(n(@) =0= (|| Z(fn)) () ()

n>0 n>0

for all ' # w.
. . Similar to the last case. We have

Z ([ f)(n)(w) =0= (|| Z(fn))(r)(w)

n>0 n>0
forall we Q.
. Otherwiser - A for someA € 2(R). Then we infer that, for ang € Q,
F (Unzo fa)()(w) = Expa(Ln>o fn)(w) by @)
= Zre[M A(r) - (|_|n>0 fn)(r)(w)
= Zre[M A(r) - (|_|n>0fn(r))(w)
= Zre[M UnZOA() (I’)((A))
= Yrefa)liMnoe A(r) - fa(r)(w)
= liMnoe 3rera () n(r)(w) by Proposition 5.16
= UnsoSrera] A - fo(r) (@)
= |_|n>0EXpA(fn)( )
= Lnz0Z (fa)(N)(w)
= (Un=0Z (fn))(r)(w) .

In the above reasoning, Proposition .16 can be appliedusecae can define the functidn:
Rx N — Rxq by letting f (r,n) = A(r) - fo(r)(w) and checking that satisfies the three conditions
in Propositiod 5.16. IRis finite, we can extend it to a countable BeD Rand requiref (r’,n) =0
forallr’ e R\Randn e N.
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(a) f satisfies conditiorC1. For anyr € Randj, jo € N, if j1 < jo thenfj, < fj,. It follows

that _ :
f(rj1) = A@M)- fiu(N(w) < AN - fi,(r)(w) = £ ]2).
(b) f satisfies conditior©2. For anyr € R, the sequencéA(r) - fa(r)(w) }n=0 is nondecreasing
and bounded b¥(r). It follows that the limit lim,_,., f(r,n) exists.

(c) f satisfies conditiorC3. For anyR’ C R, the partial sunty, g limp_. f(r,n) is bounded
because

> lim f(r,n) = lim A(r) - fa(r)(w) < 5 A(r) < ;A(r) =1 ]

n—oo n—oo
reR’ rer’ rER!

The continuity of.# implies that its fixed poin¥ can be captured by a chain of approximants. The
functionsV", n > 0 are defined by induction am

Vo(r)(w)=0  forallr e Randwe Q
V= Z (V")
NowV = |,»o V" This is used in the following result.
Lemma 5.19 Let A be a subdistribution in am-respecting deterministic pLT&R Q, —g). If A = N
then Exp\(Viro,—r)) = EXPr (ViR —p))-
Proof: For simplicity let us writeV(A) for Expy(V(ro,—g)) for anyA. Since the pLTS iso-respecting

we know thats =+ A implies s -% for any w. Therefore, from the definition of tHe functiong we
have thats =+ A impliesV"1(s) = V"(A), whence by lifting and linearity we get:

if A5 A thenV™1(A) = V(A foralln> 0.
Now supposé\ = A’. Then

N=No, M=NAN, A D Ag,  N=F AL
k=0

Using in the base case tHﬁ?(A)(m) =0 for each), a straightforward induction amyields, for all¢> 0,
n
VIA) = S VRN (13)
K=0
NamelyV”*l(/\g) — Vn—s—l(/\[x _1_/\7) — Vn+1(/\€x) +Vn+l(/\7) — Vn+1(/\x> +VN(Ags1) induction
VML A) 4+ Sroo VA ) = VA + S VMIR NS ) = SRt VKAL)
Since/\; is stable, we have

VAL =V(A)  foreveryk,m> 0. (14)
We conclude by reasoning
VIN) = UnsoV"(N) by continuity of.#
= LnsoSko V" RAY) from (I3) above, taking = 0
= Lnz0 k=0 V(AY) by (14)
= nso V(ZRooY) by linearity of vV
= V(Un>03k=0/\¢) by Lemmé&5.1I7

V(Zito)
V(N). 0
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We are now ready to compare the two methods for calculatiegsét of outcomes associated with a
subdistribution:

e using extreme derivatives and the reward function $ fromriesin [5.3

e using resolutions and the evaluation functiérirom pageb.

Theorem 5.20 In anw-respecting pLTSS Q,—), the following statements hold.
(@) If ® = @' then there is a resolutiofR, A, —r) of @ such that EXR(Virq —r)) = $P'.
(b) Forany resolutiodR, A\, —r) of ®, there exists &' such thath = @ and Exp,(V(r g ) = $P'.

Proof: Supposed =3 ®'. By Propositior 5.12, there is a resolutiOR, A, —g) of ® with resolving
function f and a subdistributio’ such that\ = A’ and®’ = Img; (\"). By Lemmd5.1D, we have

EXpA (V) = Expp (V). (15)
Since/\’ is an extreme derivative, all the stateis its support are stable, $6(s)(w) = 0 if s-%%, for all
we Q. Hence

Expy(V)(@) = 5 N()- V(@) = 5 N(5)=3N(w). (16)
se[A] se[N], s—>

Furthermore, for alt c[®'], @'(t) = Img¢ (A\')(t) = Y 15—t N'(S), SO, for allw € Q,

$0'(w) = Z P'(t) = Z Imgy (A')(t) = ZQZf(s):tA/(S): > NE=%(w),

e[t e[ t-2 e[ t-2 se[N] T(s9-2

where in the last step we the use the property of resolutiwatsf {s) -2 iff s . Combining this with
(15) and[(I18) yields that ExgV) = $d'.

To prove part (b), suppose th@®, A, —Rr) is a resolution ofp with resolving functionf, so thatp =
Img; (A). We know from LemmaB]2 that there exists a (unique) sulibigion A’ such thatA = A'.
By Propositior. 5. 13 we have thét—s Img; (/\"). The same arguments as in the other direction show
that Exp, (V) = $(Imgs (A)). 0

A direct consequence of the above theorem is #i&®) = .7 (P) for any subdistributior® in an cw-
respecting pLTSS Q,—). This implies that? ([®]) = &/P(®) for any subdistribution® in a pLTS
(S Q,—). This, in turn, together with Proposition 5111, implies fbkowing result.

Corollary 5.21 For any subdistributio® in a pLTS(S Q, —) we have that” ([®]) = <7 (P). O

6 Agreement of nonnegative- and real-reward must testing

In this section we prove the agreementof mustWith =, must for finitary convergent processes, by using
failure simulation|[3], recalled in Definitidn 4.6, as a giem stone.

Because we prune our pLTSs before extracting values from,tive will be concerned mainly with
w-respecting structures. Moreover, we require the pLTSsetodmvergentin the sense that there is
no wholly divergent stats, i.e. withs= ¢. It follows from Theorem 8 in[[B], in combination with
Lemma[4.4(iii), that on a finitary convergent pLTSAf=> A’ with A a full distribution, therd\’ is a full
distribution.

Lemma 6.1 Let A andl" be full distributions in arw-respecting finitary convergent pLTS, Q, —). If
distributionT is stable and” <A, then § € 7/ (A).
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Proof: We first show that iSis stable and <. A with A a full distribution, then $€ 7/(A). Sincesis
stable, we have only two cases:

(i) s~ Here $:6> Whereﬁ(a)) :O for all w e_§>2. Sinces <1, A we haveA —> A’ with A" /4,
whence in fach = A"and &Y = 0. Thus $= 0 € 7 (A).

(i) s-“ I’ for somel”’ Here $= ¢, and sinces <ps A we haveh = A’ 25, As remarked above,
also\’ is a full distribution. Hence #=¢5. Because the pLTS i@-respecting, in fach = A/
and so again$= @ € ¥ (A).
Now for the general case we suppdséd..A. By Lemmal4.2 there is an index sefand states,
subdistributiong); and probabilitiegy; for i € I, with 5, pi <1, such that

=3 bi'S, S <A foreachi €| and A=Y pi-D.

SinceAis full, ¥ pi = 1 and the); are full distributions. Since€ is stable, each staspis stable. From
above we have thatsde 7/ (4) foralliel, and so § = 5, pi-$5 € Sic pi- 7' (L) = 7 (4), using
Lemmd5.4. O

Lemma 6.2 Let A andl" be full distributions in anw-respecting finitary convergent pLTS Q, —).
ThenA CgsT implies 7/ (A) 2 ¥/ (TN).
Proof: Letl",A € 2(S). We first claim that

(i) If A= A then¥ (A) C ¥ (AD).

(i) If T 954, then we have/' (IN) C 7(1).
The first claim holds because & = A” thenA = A" = A", i.e. every extreme derivative of
A" is also an extreme derivative &f For the second claim, we assuméd g A. For anyl ="’
Lemma4.Y gives a matching transitidn—> A’ such thaf”’ < A’". By definitionl"" is stable and since
(S Q,—) is finitary and convergent’ andl"’ must be full. It follows from LemmB&#6l1 and Claim (i) that
$" e ¥ (') C ¥(A). Consequently, we obtaitr (M) C 7/ (A).

Now supposeé\ Crs . By definition there exists som& such thatA = A" andl" < A’". By the

above two claims we obtait (') C 7/ (A") C 7 (Q). O

This lemma shows that the failure-simulation preorder i€y ®trong relation in the sense that\ifis
related td™ by the failure-simulation preorder then the set of outcogeserated by includes the set of
outcomes given bY/. It is mainly due to this strong property that we can show thatfailure-simulation
preorder is sound for the real-reward must-testing preor@envergence is a crucial condition in this
lemma.

Theorem 6.3 For any finitary convergent processgeandl, if A Crs ™ then we have thak T st

Proof: We reason as follows.

ACesl
implies  [©]|A] Cgs [O||T] Lemmd5.ID, for anf-test®
implies  7(]©]|4]) 2 7 ([©||I']) [-] is w-respecting; Lemma®.2
iff o (©,A) D o7 (0,I) Corollary(5.21

implies h-<7/(©,A) Dh-2/(0,I') foranyhe [-1,1]?
implies [1h-</(©,A) <[h-«/(©,I') foranyhe [-1,1)%
iff ACS sl -

=Ir must
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Note that in the second line above, b A] and[©||'] are convergent, since for any convergent process
= and finite proces®, by induction on the structure @, it can be shown that the compositi@ = is
also convergent. Furthermore, since procegs€sand test® are defined to be full distributions, also
[©]|A] and[O]|] are full. O

The proof of the above theorem is subtle. The failure-sitmutgpreorder is defined via weak derivations
(cf. Definition[4.6), while the reward must-testing prearidedefined in terms of resolutions (cf. Defini-
tion[3.3). Fortunately, we have shown in Corollary .21 tlatcan just as well characterise the reward
must-testing preorder in terms of weak derivations. Basethis observation, the proof was carried out
by exploiting Lemmag5.10 and 6.2.

This result does not extend to divergent processes. Onesgitexample is given in Figuké 1. A
simpler example is as follows. Létbe a process that diverges, by performing-laop only, and lef”
be a process that merely performs a single adidihholds thatA Cgsl™ becausé —> € and the empty
subdistribution can failure-simulate any processes. Wewef we apply the test from Example_3.P
again, and the reward tupfewith h(w) = —1, then

Mh-«/(8) = Mh-7(Ha) = Mh{se} = o} = o0
Mh-o@r) = Mhr(Er) = Oh{@d) = M-y = -1

As[Th- (,0) £ [h- </ (T,F), we see thah I mus: . Since? ([E||I1]) = {&} but @ ¢ ¥ ([E||A]), this
also is a counterexample against an extension of Lemnha éh2Xlivergence.

Finally, by combining Theorenis3.6(ii) abd ¥.8(ii), togettwith Theoreni 6]3, we obtain the main
result of the paper which states that, in the absence ofglwee, nonnegative-reward must testing is as
discriminating as real-reward must testing.

Theorem 6.4 For any finitary convergent process&sand [, it holds thatA C,, st I If and only if
A Enrmustr-

Proof: The “only if” direction is obvious (cf. Definitiof 3]5). Fohe “if” direction, supposé\ andl
are finitary convergent processes. We reason as follows.

A EnQrmust r
iff ACousth Theoreni35(ii)
iff ACgsl Theoreni 4.B(ii)
implies  ACS st - Theoreni6.80

7 Discussion

Below we give a characterisation ©f, mystin terms of the set inclusion relation between testing auteo
sets. As a similar characterisation far, st does in general not hold for finitary (non-convergent)
processes, hopefully this gives some indication of thelsulifference between r mustandCnrmussy and
we see more clearly why our proof of TheorEml 6.4 involves #ilerfe simulation preorder.

Theorem 7.1 LetA andl” be any finitary processes. ThAM; mustl™ if and only if 7 (0,A) 2 &7 (©,T)
for any Q-testO.

Proof: (<) Let © be anyQ-test andh € [—1,1]° be any real-reward tuple. Supposé(©,A) D
</ (©,I). Itis obvious thah- <7 (©,A) D h- <7 (O,I), from which it easily follows that

[]h-2(0,8) < []h-2(0,).
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As this holds for an arbitrary real-reward tugiewe see thaf\ T, mustl™-
(=) Suppose for a contradiction that there is sdiréest® with <7 (0,A) 2 </ (©,I'). Then there
exists some outcomec .27 (0,I) lying outsidess/ (O,4A), i.e.

o¢ o/ (0,A). 17)

SinceO is finite, it contains only finitely many elements @f so that we may assume wlog tHatis
finite. SinceA and© are finitary, it is easy to see that the pruned composii®] is also finitary.
By Theorem 1/Corollary 1 ir 3], the s¢tb | [A||©] = P} is convex and compact. With an analogous
proof, it can be shown that so is the $€t | [A||©] = ®}. It follows that the set

{$P | [A|O] = ®}

i.e. 7([©]|4]), is also convex and compact. By Corolldry 53.21 the s€©,A) is thus convex and
compact. Combining this with (17), and using the Separdtigperplane Lemma |7, 12], we infer the
existence of some hyperplane whose norméal ésR® such thath-o > h-ofor all d € 7/ (©,A). By
scalingh, we obtain without loss of generality thiatc [—1, 1]°. It follows that

[ ]h-#(©,8) > h-o > [|h-#(©,)
which is a contradiction to the assumption tAat st ! O

Note that in the above proof the normal of the separating tpjpee belongs t¢—1,1]? rather than

[0, 1]9. So we cannot repeat the above proof fof;must 1N general, we do not have thAtC  must I
implies <7 (©,A) D «7(0,I) for any Q-test® and for arbitrary finitary processésandr’, that is finitary
processes which might not be convergent. However, when staateourselves to finitary convergent
processes, this property does indeed hold, as can be seerhfedirst four lines in the proof of Theo-
rem[6.3. Note that in that proof there is an essential useeofaifure simulation preorder; in particular
the pleasing property stated in Lemima 6.2. Even for finitarwergent processes we cannot give a direct
and simple proof of that property f&f,;nus; analogous to that of Theordm17.1.

8 Conclusion

We have studied a notion of real-reward testing which exgehd traditional nonnegative-reward testing
with negative rewards. It turned out that the real-rewargy pr@order is the inverse of the real-reward
must preorder, and vice versa. More interestingly, fordiyittonvergent processes, the real-reward must
testing preorder coincides with the nonnegative-rewastirtg preorder. In order to prove this result,
we have capitalised on a characterisation of nonnegatiwend testing in terms of a derivation based
simulation preorder. Relating derivations to resolutjamswhich the testing theories are based, involved
proving some analytic properties such as the continuityfahation for calculating testing outcomes.

Although for finitary convergent processes real-rewardtresting is no more powerful than non-
negative-reward must testing, the same does not hold fortestéiyng. This is immediate from our result
that (the inverse of) real-reward may testing is as powexfuteal-reward must testing, that is known
not to hold for nonnegative-reward may- and must testingr flitary processes we know from![3]
that Cprmay and Cnrmust COrrespond to the simulation and failure simulation preoméspectively, and
without divergence the latter is strictly more discrimingtthan the former.
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