
Real-Reward Testing for Probabilistic Processes

Yuxin Deng1∗ Rob van Glabbeek2 Matthew Hennessy3† Carroll Morgan4‡

1 Shanghai Jiao Tong University, China
2 NICTA, Sydney, Australia§

3 Trinity College Dublin, Ireland
2,4 University of New South Wales, Sydney, Australia

We introduce a notion of real-valued reward testing for probabilistic processes by extending the tra-
ditional nonnegative-reward testing with negative rewards. In this richer testing framework, the may-
and must preorders turn out to be inverses. We show that for convergent processes with finitely many
states and transitions, but not in the presence of divergence, the real-reward must-testing preorder
coincides with the nonnegative-reward must-testing preorder. To prove this coincidence we charac-
terise the usual resolution-based testing in terms of the weak transitions of processes, without having
to involve policies, adversaries, schedulers, resolutions or similar structures that are external to the
process under investigation. This requires establishing the continuity of our function for calculating
testing outcomes.

1 Introduction

Extending classical testing semantics [1, 9] to a setting inwhich probability and nondeterminism co-exist
was initiated in [18]. The application of a test to a process yields a set of probabilities for reaching a
success state. Traditionally, this set of result probabilities is obtained byresolving[7] a system into a non-
empty set of deterministic but probabilistic systems, eachrepresenting a possible probabilistic run of the
original system; concepts such aspolicy [14], adversary[15], scheduler[16] andresolution[7] have been
used for this purpose.Reward testingwas introduced in [10] for concurrency, though earlier pioneered
in [11] for sequential programs; here the success states arelabelled by nonnegative real numbers—
rewards—to indicate degrees of success, and reaching a success state accumulates the associated reward.
In [17] an infinite set of success actions is used to report success, and the testing outcomes are vectors
of probabilities of performing these success actions. Compared to [10] this amounts to distinguishing
different qualities of success, rather than different quantities.

In [18] and [17], both tests and testees are nondeterministic probabilistic processes, whereas [10]
allows nonprobabilistic tests only, thereby obtaining a less discriminating form of testing. In [7] we
strengthened reward testing by also allowing probabilistic tests. Taking reward testing in this form we
showed that for finitary processes, i.e. finite-state and finitely branching processes, all three modes of
testing lead to the same testing preorders. Thus, vector-based testing is no more powerful thanscalar
testing that employs only one success action, and likewise reward testing is no more powerful than the
special case of reward testing in which all rewards are 1.1

∗Deng was partially supported by the National Natural Science Foundation of China (61173033, 61261130589, 61033002).
†Hennessy was supported by SFI project SFI 06 IN.1 1898.
‡Morgan acknowledges the support of ARC Discovery Grant DP0879529.
§NICTA is funded by the Australian Government as representedby the Department of Broadband, Communications and the

Digital Economy and the Australian Research Council through the ICT Centre of Excellence program.
1In spite of this thereis a difference in power between the notions of testing from [18] and [17], but this is an issue that is

2 Real-Reward Testing for Probabilistic Processes

q
1

τ

a

b

a

b

τ

a

q
2

a

b

1/2 1/2

ω1

ω2

t

Figure 1: Two processes with divergence and a test

In certain situations it is natural to introduce negative rewards; this is the case, for instance, in the
theory of Markov Decision Processes [14]. Intuitively, we could understand negative rewards as costs,
while positive rewards are often viewed as benefits or profits. Consider for instance the (nonprobabilistic)
processesq1 andq2 of Figure 1. Herea represents the action of making an investment. Assuming that the
investment is made by bidding for some commodity, theτ-action represents an unsuccessful bid — if this
happens one simply tries again. Nowb represents the action of reaping the benefits of this investment.
Wheresq1 models a process in which making the investment is always followed by an opportunity to
reap the benefits, the processq2 allows, nondeterministically, for the possibility that the investment is
unsuccessful, so thata does not always lead to a state whereb is enabled. The testt, which will be
explained later, allows us to give a negative reward to action a—its cost—and a positive reward tob.

This leads to the question:if both negative- and positive rewards are allowed, how would the original
reward-testing semantics change?2 We refer to the more relaxed form of testing, using positive and
negative rewards, asreal-reward testingand the original one (from [10], but with probabilistic tests as in
[7]) asnonnegative-reward testing.

The power of real-reward testing is illustrated in Figure 1.The two (nonprobabilistic) processes in
the left- and central diagrams are equivalent under (probabilistic) may- as well as must testing; theτ-
loops in the initial states cause both processes to fail any nontrivial must test. Yet, if a reward of−1 is
associated with performing the actiona, and a reward of 2 with the subsequent performance ofb, it turns
out that in the first process the net reward is either 0, if the process remains stuck in its initial state, or
positive, whereas running the second process may yield a loss. See Example 3.8 for details of how these
rewards are assigned, and how net rewards are associated with the application of tests such ast. This
example shows that for processes that may exhibit divergence, real-reward testing is more discriminating
than nonnegative-reward testing, or other forms of probabilistic testing. It also illustrates that the extra
power is relevant in applications.

As remarked, in [7] we established that for finitary processes the nonnegative-reward must-testing
preorder (⊑nrmust) coincides with the probabilistic must-testing preorder (⊑pmust), and likewise for the

entirely orthogonal to the distinction between scalar testing, reward testing and vector-based testing. In [17] it is the execution
of a successactionthat constitutes success, whereas in [1, 9, 18, 10] it is reaching a successstate(even though typically success
actions are used to identify those states). In [2, Ex 5.3] we showed that state-based testing is (slightly) more powerfulthan
action-based testing. The results presented in [7] about the coincidence of scalar, reward, and vector-based testing preorders
pertain to action-based version of each, but in the conclusion it is observed that the same coincidence could be obtainedfor
their state-based versions. In the current paper we stick tostate-based testing.

2One might suspect no change at all, for any assignment of rewards from the interval[−1,+1] can be converted into a non-
negative assignment simply by adding 1 to all of them. But that would not preserve the testing order in the case of zero-outcomes
that resulted from a process’s failing to reach any success state at all: those zeroes would remain zero.

Y. Deng, R.J. van Glabbeek, M. Hennessy & C.C. Morgan 3

(⊑rr may)
−1 Thm. 3.7

= ⊑rr must
Thm. 6.4

= ⊑nrmust
[7]
= ⊑pmust

[3]
= ⊑FS

The symbol= between two relations means that they coincide for finitary convergent processes.

Figure 2: The relationship of different testing preorders.

may preorders. The main result of this paper is that restricted to finitary convergent processes, the real-
reward must preorder⊑rr must coincides with the nonnegative-reward must preorder, i.e.for any finitary
convergent processes,

∆ ⊑rr must Γ iff ∆ ⊑nrmustΓ. (1)

Here, as we shall see, convergence is the natural generalisation of the standard concept for nonproba-
bilistic processes to the probabilistic setting; in particular it rules out the processes of Figure 1.

There is also a surprisingly simple proof of the fact that forreal-reward testing the may- and must
preorders are the inverse of each other, i.e. that for any processes∆ andΓ,

∆ ⊑rr may Γ iff Γ ⊑rr must∆. (2)

This pleasing symmetry does not hold for the more restrictive nonnegative-reward (or scalar) testing.
Moreover, the analogy of (1) for the may preorder does not hold, i.e.⊑rr may does not coincide with
⊑nrmay (q.v. the end of Section 8).

Although it is easy to see that in (1) the former implies the latter, to prove the opposite is far from
trivial; see more discussion in Section 7. We employ a characterisation of⊑pmust from [2, 3]. Failure
simulation is a well-known behavioural preorder for nondeterministicprocesses [8]; in [2] we showed
that it could be adapted to characterise the probabilistic must-testing preorder⊑pmust, and in [3] this work
was generalised from finite to finitary processes. This involved the generalisation of the standard notion
of (weak) derivations in state-based systems [13], to probabilistic processes, i.e. probability distributions.
By capitalising on this novel notion of derivation between distributions we can show that the failure
simulation preorder⊑FS is contained in⊑rr must. Convergence is essential here, even though it is not
needed to establish that⊑FS is contained in⊑nrmust. Recall that⊑rr must is defined usingresolutions; the
key to proving this containment, the heart of the paper, is showing that certain derivations, which we call
extreme derivations, are essentially the same asresolutions. Combining this with the results from [7]
and [3] mentioned above leads to our required result that⊑nrmust is included in⊑rr must, as far as finitary
convergent processes are concerned. Consequently, in thiscase, all the relations of Figure 2 collapse into
one.

The rest of this paper is organised as follows. We start by recalling notation for probabilistic labelled
transition systems. In Section 3 we review the resolution-based testing approach and show that the
real-reward may preorder is simply the inverse of the real-reward must preorder. Moreover, using the
example of Figure 1, we show that in the presence of divergence the inclusion of⊑rr must in ⊑nrmust is
proper. In Section 4 we recall the notions of derivation and the failure simulation preorder. In Section
5 we show that resolutions can be seen as certain kinds of derivations. Then in Section 6 we show
for finitary convergent processes that real-reward must testing coincides with nonnegative-reward must
testing. We explain in Section 7 why the proof of the coincidence result cannot easily be simplified, and
then conclude in Section 8.

Besides the related work already mentioned above, many other studies on probabilistic testing and
simulation semantics have appeared in the literature. Theyare reviewed in [6, 2]. An extended abstract
of the current work has appeared as [5]. All the proofs omitted there are now detailed. Section 7 is newly
added to explain the subtle difference between⊑rr must and⊑nrmust.

4 Real-Reward Testing for Probabilistic Processes

2 Probabilistic Processes

A (discrete) probabilitysubdistributionover a setS is a function∆ : S→ [0,1] with ∑s∈S∆(s) ≤ 1; the
supportof such a∆ is ⌈∆⌉ := {s∈S | ∆(s) > 0}, and itsmass|∆| is ∑s∈⌈∆⌉∆(s). A subdistribution is a
(total, or full) distribution if |∆|= 1. The point distributions assigns probability 1 tosand 0 to all other
elements ofS, so that⌈s⌉ = {s}. With Dsub(S) we denote the set of subdistributions overS, and with
D(S) its subset of full distributions.

Let {∆k | k∈ K} be a set of subdistributions, possibly infinite. Then∑k∈K ∆k is the real-valued func-
tion in S→ R defined by(∑k∈K ∆k)(s) := ∑k∈K ∆k(s). This is a partial operation on subdistributions
because for some states the sum of∆k(s) might exceed 1. If the index set is finite, say{1..n}, we often
write ∆1+ . . .+∆n. For p a real number from[0,1] we usep·∆ to denote the subdistribution given by
(p·∆)(s) := p·∆(s). Finally we useε to denote the everywhere-zero subdistribution that thus has empty
support. These operations on subdistributions do not readily adapt themselves to distributions; yet if
∑k∈K pk=1 for somepk ≥ 0, and the∆k are distributions, then so is∑k∈K pk ·∆k.

The expected value∑s∈S∆(s)· f (s) over a subdistribution∆ of a bounded nonnegative functionf
to the reals or tuples of them is written Exp∆(f), and the image of a subdistribution∆ through a func-
tion f : S→ T, for some setT, is written Imgf (∆) — the latter is the subdistribution overT given by
Imgf (∆)(t) := ∑ f (s)=t ∆(s) for eacht ∈ T.

Definition 2.1 A probabilistic labelled transition system(pLTS) is a triple〈S,Act,→〉, where
(i) S is a set of states,
(ii) Act is a set of visible actions,

(iii) relation → is a subset ofS×Actτ ×D(S).
HereActτ denotesAct∪{τ}, whereτ 6∈ Act is the invisible- or internal action.

A (nonprobabilistic) labelled transition system (LTS) maybe viewed as a degenerate pLTS — one in
which only point distributions are used. As with LTSs, we write s α−→ ∆ for (s,α ,∆)∈→, as well as
s α−→ for ∃∆ : s α−→ ∆ ands→ for ∃α : s α−→, with s 6α−→ ands 6→ representing their negations.

We graphically depict pLTSs as follows. States are represented by nodes of the form• and distribu-
tions by nodes of the form◦. For any states and distribution∆ with s α−→ ∆ we draw an edge froms to
∆, labelled withα . For any distribution∆ and states in ⌈∆⌉, the support of∆, we draw an edge from∆
to s, labelled with∆(s). We leave out point-distributions, diverting an incoming edge to the unique state
in its support. See e.g. Figure 4 in the next section for some example pLTSs.

In this paper a(probabilistic) processwill simply be a distribution over the state set of a pLTS. A
pLTS is deterministicif for any states and labelα there is at most one distribution∆ with s α−→ ∆. It
is finitely branchingif the set{∆ | s α−→ ∆, α ∈L} is finite for all statess; if moreoverS is finite, then
the pLTS isfinitary. A subdistribution∆ over the state setSof an arbitrary pLTS isfinitary if restricting
S to the states reachable from∆ in the graphical representation of the pLTS yields a finitarysub-pLTS.
Similarly, a subdistribution∆ is finite if restricting S to the states reachable from∆ yields a finitary
sub-pLTS without loops.

3 Testing probabilistic processes

A test is a finite distribution over the state set of a pLTS havingActτ ∪Ω as its set of transition labels,
whereΩ is a set of freshsuccessactions, not already inActτ , introduced specifically to report testing
outcomes.3 For simplicity we may assume a fixed pLTS of processes—our results apply to any choice

3For vector-basedtesting we normally takeΩ to be countably infinite [17]. This way we have an unbounded supply of
success actions for building tests, of course without obligation to use them all.Scalartesting is obtained by taking|Ω|= 1.

Y. Deng, R.J. van Glabbeek, M. Hennessy & C.C. Morgan 5

t α−→T Θ α 6∈Act

t‖p α−→ Θ‖p

p τ−→P ∆
t‖p τ−→ t‖∆

t a−→T Θ p a−→P ∆ a∈Act

t‖p τ−→ Θ‖∆

Figure 3: Synchronous parallel composition between tests and processes

of such a pLTS—and a fixed pLTS of tests. Since the power of testing depends on the expressivity of
the pLTS of tests—in particular certain types of tests are necessary for our results—let us just postulate
that this pLTS is sufficiently expressive for our purposes — for example that it can be used to interpret
all processes from the languagepCSP, as in our previous papers [6, 2, 3].4

Although we use successactions, they are used merely to mark certain states as success states,
namely the sources of transitions labelled by success actions. For this reason we systematically ignore
the distributions that can be reached after a success action. We impose two requirements on all states in
a pLTS of tests, namely

(A) if t ω1−→ andt ω2−→ with ω1,ω2 ∈ Ω thenω1 = ω2. uniqueness
(B) if t ω−→ with ω ∈ Ω andt α−→ ∆ with α ∈ Actτ thenu ω−→ for all u∈ ⌈∆⌉. no ω-disabling

The first condition says that a success state can have one success identity only, whereas the second
condition is a slight weakening of the requirement from [10]that success states must be end states; it
allows further progress from anω-success state, for someω ∈ Ω, butω must remain enabled.5

To apply testΘ to process∆ we form a parallel compositionΘ‖∆ in which all visible actions of∆
must synchronise withΘ. Those synchronisations are immediately renamed intoτ so that the resulting
composition is a process whose only possible actions are theelements ofΩτ := Ω∪{τ}. Formally, if
〈P,Act,→P〉 and〈T,Act∪Ω,→T〉 are the pLTSs of processes and tests, then the pLTS of applications of
tests to processes is〈C,Ω,→〉, with C = {t‖p | t∈T∧ p∈P} and→ the transition relation generated by
the rules in Fig. 3. Here ifΘ ∈D(T) and∆ ∈D(P), thenΘ‖∆ is the distribution given by(Θ‖∆)(t‖p) :=
Θ(t) · ∆(p). The resulting pLTS also satisfies (A), (B) above; this wouldnot be the case if we had
strengthened (B) to require that success states must be end states.

We will define the resultA (Θ,∆) of applying the testΘ to the process∆ to be a set of testing
outcomes, exactly one of which results from each resolutionof the choices inΘ‖∆. Eachtesting outcome
is anΩ-tuple of real numbers in the interval [0,1], i.e. a functiono : Ω → [0,1], and itsω-component
o(ω), for ω ∈ Ω, gives the probability that the resolution in question willreach anω-success state, one
in which the success actionω is possible.

Due to the presence of nondeterminism in pLTSs, we need a mechanism to reduce a nondeterministic
structure into a set of deterministic structures, each of which determines a single possible outcome. Here
we adapt the notion ofresolution, defined in [7] for probabilistic automata, to pLTSs.

Definition 3.1 [Resolution]A resolutionof a subdistributionΦ∈Dsub(S) in a pLTS〈S,Ω,→〉 is a triple
〈R,Λ,→R〉 where〈R,Ω,→R〉 is a deterministic pLTS andΛ∈Dsub(R), such that there exists aresolving
function f : R→ Ssatisfying

(i) Img f (Λ) = Φ

(ii) if r α−→R Λ′ for α ∈ Ωτ then f (r) α−→ Imgf (Λ′)

(iii) if f (r) α−→ for α ∈ Ωτ thenr α−→R .

4In [3] tests are allowed to be finitary, but if two processes are behaviourally different they can be distinguished by some
characteristic tests which are always finite. Therefore, the results in [3] still hold if tests are required to be finite, as we do here.

5This simplifies our treatment of test but, as can be seen from Appendix A of [7], it is not a heavy restriction.

6 Real-Reward Testing for Probabilistic Processes

τ

1/2

τ

ω

τ

(c)

s
s

s

s

2

3

4

1

a

ω

τ

1/2

a

τ

q
1 t

(a) (b)

1/2 1/2

||t q
1

Figure 4: Testing the processq1

The reader is referred to Section 2 of [7] for a detailed discussion of the concept of resolution, and the
manner in which a resolution represents a run of a process; inparticular in a resolution states inS are
allowed to be resolved into distributions, and computationsteps can beprobabilistically interpolated.
Our resolutions match the results of applying a scheduler asdefined in [16].

We now explain how to associate an outcome with a particular resolution, which in turn will associate
a set of outcomes with a subdistribution in a pLTS. Given a deterministic pLTS〈R,Ω,→R〉 consider the
functionalF : (R→ [0,1]Ω)→ (R→ [0,1]Ω) defined by

F (g)(r)(ω) :=











1 if r ω−→

0 if r 6ω−→ andr 6τ−→

Exp∆(g)(ω) if r 6ω−→ andr τ−→ ∆.

(3)

We view the unit interval[0,1] ordered in the standard manner as a complete lattice; this induces the
structure of a complete lattice on the product[0,1]Ω and in turn on the set of functionsR→ [0,1]Ω. The
functionalF is easily seen to be monotonic and therefore has a least fixed point, which we denote by
V〈R,Ω,→R〉; this is abbreviated toV when the deterministic pLTS in question is understood. Intuitively
ExpΛ(V〈R,Ω,→R〉) is the result of executing the resolution〈R,Λ,→R〉 starting from the initial distribution
Λ, a vector of probabilities. From Definition 3.1 we see that ingeneral a distributionΦ gives rise to a
non-empty set of resolutions. Collecting all of the possible results of executing them we get

A (Φ) = {ExpΛ(V〈R,Ω,→R〉) | 〈R,Λ,→R〉 is a resolution ofΦ} . (4)

This notation is most often used in calculating the results of applying a test to a process. To emphasise
this, we will sometimes use the notationA (Θ,∆) for A (Θ‖∆).

Example 3.2 Consider the processq1 depicted in Figure 4(a). When we apply the testt depicted in
Figure 4(b) to it we get the processt‖q1 depicted in Figure 4(c). This process is already deterministic,
hence has essentially only one resolution: itself. Moreover the outcome Expt‖q1

(V) =V(t‖q1) associated

with it is the least solution of the equationV(t‖q1) =
1
2 ·V(t‖q1)+

1
2
−→ω where−→ω : Ω → [0,1] is theΩ-

tuple with−→ω (ω) = 1 and−→ω (ω ′) = 0 for all ω ′ 6= ω . In fact this equation has a unique solution in[0,1]Ω,
namely−→ω . ThusA (t,q1) = {−→ω }. 2

Y. Deng, R.J. van Glabbeek, M. Hennessy & C.C. Morgan 7

1/2

τ τ

1/2 1/2

τ

ω

(a)

τ

s1

4

ω

τ

1/2

2
s

ω

(b) (c)

:=s ||t

s5
s6

q
2q

1/2

1/2

2

τ

τ τ

1/2

a
a

t

a

0

1/2

s 3
s

Figure 5: Testing the processq2

Example 3.3 Consider the processq2 and the application of the testt to it, as outlined in Figure 5. For
eachk ≥ 1 the processt‖q2 has a resolution〈Rk,Λ,→Rk〉 such that ExpΛ(V) = (1− 1

2k)
−→ω ; intuitively it

goes around the loop(k−1) times before at last taking the right handτ action. ThusA (t,q2) contains
(1− 1

2k)
−→ω for everyk ≥ 1. But it also contains−→ω , because of the resolution which takes the left hand

τ-move every time. ThusA (t,q2) includes the set

{(1−1
2)
−→ω , (1− 1

22)
−→ω , . . . ,(1− 1

2k)
−→ω , . . . ,

−→ω }

As resolutions allow any interpolation between the twoτ-transitions from states1, A (t,q2) is actually
the convex closure of the above set. 2

There are two standard methods for comparing two sets of ordered outcomes:

O1 ≤Ho O2 if for every o1 ∈ O1 there exists someo2 ∈ O2 such thato1 ≤ o2

O1 ≤Sm O2 if for every o2 ∈ O2 there exists someo1 ∈ O1 such thato1 ≤ o2

This gives us our definition of the probabilistic may- and must-testing preorders; they are decorated with
·Ω for the repertoireΩ of testing actions they employ.

Definition 3.4 [Probabilistic testing preorders]

(i) ∆ ⊑Ω
pmayΓ if for every Ω-testΘ, A (Θ,∆)≤Ho A (Θ,Γ).

(ii) ∆ ⊑Ω
pmustΓ if for every Ω-testΘ, A (Θ,∆)≤Sm A (Θ,Γ).

These preorders are abbreviated to∆ ⊑pmayΓ and∆ ⊑pmustΓ when|Ω|= 1.

In [7] we established that for finitary processes⊑Ω
pmay coincides with⊑pmay and⊑Ω

pmust with ⊑pmust

for any choice ofΩ. We also defined the reward-testing preorders in terms of themechanism set up so
far. The idea is to associate with each success actionω ∈ Ω a reward, which is a nonnegative number in
the unit interval[0,1]; and then a run of a probabilistic process in parallel with a test yields an expected
reward accumulated by those states which can enable successactions. A reward tupleh∈ [0,1]Ω is used
to assign rewardh(ω) to success actionω , for eachω ∈ Ω. Due to the presence of nondeterminism,
the application of a testΘ to a process∆ produces a set of expected rewards. Two sets of rewards

8 Real-Reward Testing for Probabilistic Processes

can be compared by examining their suprema/infima; this gives us two methods of testing called reward
may/must testing. In [7] all rewards are required to be nonnegative, so we refer to that approach of testing
asnonnegative-reward testing. If we also allow negative rewards, which intuitively can beunderstood as
costs, then we obtain an approach of testing calledreal-reward testing. Technically, we simply let reward
tuplesh range over the set[−1,1]Ω. If o∈ [0,1]Ω, we use the dot-producth ·o = ∑ω∈Ω h(ω) ·o(ω). It
can apply to a setO⊆ [0,1]Ω so thath·O= {h·o | o∈ O}. Let A⊆ [−1,1]. We use the notation

⊔

A for
the supremum of setA, and

d
A for the infimum.

Definition 3.5 [Reward testing preorders]

(i) ∆ ⊑Ω
nrmay Γ if for every Ω-testΘ and nonnegative-reward tupleh∈ [0,1]Ω,

⊔

h·A (Θ,∆)≤
⊔

h·A (Θ,Γ).

(ii) ∆ ⊑Ω
nrmustΓ if for every Ω-testΘ and nonnegative-reward tupleh∈ [0,1]Ω,d

h·A (Θ,∆)≤
d

h·A (Θ,Γ).

(iii) ∆ ⊑Ω
rr may Γ if for every Ω-testΘ and real-reward tupleh∈ [−1,1]Ω,

⊔

h·A (Θ,∆)≤
⊔

h·A (Θ,Γ).

(iv) ∆ ⊑Ω
rr mustΓ if for every Ω-testΘ and real-reward tupleh∈ [−1,1]Ω,d

h·A (Θ,∆)≤
d

h·A (Θ,Γ).

This time we drop the superscriptΩ iff Ω is countably infinite.

It is shown in Corollary 1 of [7] that nonnegative-reward testing is equally powerful as probabilistic
testing.

Theorem 3.6 [7]For any finitary processes∆ andΓ,

(i) ∆ ⊑nrmay Γ if and only if ∆ ⊑pmayΓ.

(ii) ∆ ⊑nrmustΓ if and only if ∆ ⊑pmustΓ.

In this paper we focus on the real-reward testing preorders⊑rr may and⊑rr must, by comparing them with
the nonnegative reward testing preorders⊑nrmay and⊑nrmust. Although these two nonnegative-reward
testing preorders are in general incomparable, we have for the real-reward testing preorders:

Theorem 3.7 For any processes∆ andΓ, it holds that∆ ⊑rr may Γ if and only if Γ ⊑rr must ∆.

Proof: We first notice that for any nonempty setA⊆ [0,1]Ω and any reward tupleh∈ [−1,1]Ω,

⊔

h·A = − (
l

(−h) ·A) (5)

where−h is the negation ofh, i.e. (−h)(ω) = −(h(ω)) for anyω ∈ Ω. We consider the “if” direction;
the “only if” direction is similar. LetΘ be anyΩ-test andh be any real reward tuple in[−1,1]Ω. Clearly,
−h is also a real reward tuple. SupposeΓ ⊑rr must∆, then

l
(−h) ·A (Θ,Γ) ≤

l
(−h) ·A (Θ,∆) (6)

Therefore, we can infer that
⊔

h·A (Θ,∆) = −(
d

(−h) ·A (Θ,∆)) by (5)
≤ −(

d
(−h) ·A (Θ,Γ)) by (6)

=
⊔

h·A (Θ,Γ) by (5). 2

Y. Deng, R.J. van Glabbeek, M. Hennessy & C.C. Morgan 9

Our next task is to compare⊑rr must with ⊑nrmust. The former is included in the latter, which directly
follows from Definition 3.5. Surprisingly, it turns out thatfor finitary convergent processes the latter is
also included in the former, thus establishing that the two preorders are in fact the same. The rest of
the paper is devoted to proving this result. However, we firstshow that this result does not extend to
divergent processes.

Example 3.8 Consider the processesq1 and q2 depicted in Figure 1. Using the characterisations of
⊑pmay and⊑pmust in [3], it is easy to see that these processes cannot be distinguished by probabilistic
may- and must testing, and hence not by nonnegative-reward testing either. However, lett be the test in
the right diagram of Figure 1 that first synchronises on the action a, and then with probability12 reaches
a state in which a reward of−2 is allocated, and with the remaining probability1

2 synchronises with the
actionb and reaches a state that yields a reward of 4. Thus the test employs two success actionsω1 and
ω2, and we use the reward tupleh with h(ω1) = −2 andh(ω2) = 4. Then the resolution ofq1 that does
not involve theτ-loop contributes the value−2 · 1

2 +4 · 1
2 = −1+2= 1 to the seth ·A (t,q1), whereas

the resolution that only involves theτ-loop contributes the value 0. Due to interpolation,h ·A (t,q1) is
in fact the entire interval[0,1]. On the other hand, the resolution corresponding to thea-branch ofq2

contributes the value−1 andh·A (t,q2) = [−1,1]. Thus
d

h·A (t,q1) = 0> −1=
d

h·A (t,q2), and
henceq1 6⊑rr mustq2. 2

4 Failure simulations

In this section we explain the characterisation of probabilistic testing from [2, 3]; it depends on a general-
isation of failure simulations [8] to the probabilistic setting. The key ingredient is that of weak derivations
for distributions. To deal with infinite (but finitary) processes, we need to employ the weak derivations
of [3] rather than those of [2].

In a pLTS actions are performed only by states, in that actions are given by relations from states to
distributions. But processes in general correspond to distributions over states, so in order to define what
it means for a process to perform an action, we need tolift these relations so that they also apply to
distributions. In fact we will find it convenient to lift themto subdistributions.

Definition 4.1 Let (S,L,→) be a pLTS andR ⊆S×Dsub(S) be a relation from states to subdistributions.
ThenR ⊆ Dsub(S)×Dsub(S) is the smallest relation that satisfies:

(i) sR ∆ impliessR ∆, and
(ii) (Linearity) Γi R ∆i for i∈ I implies (∑i∈I pi ·Γi) R (∑i∈I pi ·∆i) for any pi ∈[0,1] (i∈ I) with

∑i∈I pi ≤ 1, whereI is a countable set.

An application of this notion is when the relation isα−→ for α ∈ Actτ ; in that case we also writeα−→
for α−→. Thus, as source of a relationα−→ we now also allow distributions, and even subdistributions. A
subtlety of this approach is that for any actionα , we haveε α−→ ε simply by takingI = /0 or ∑i∈I pi = 0
in Definition 4.1. That turns out to makeε especially useful for modelling the “chaotic” aspects of
divergence in [3], in particular that in the must-case a divergent process can mimic any other.

Definition 4.1 is very similar to our previous definition in [2], although there it applied only to (full)
distributions:

Lemma 4.2 Γ R ∆ if and only if
(i) Γ = ∑i∈I pi ·si , whereI is an index set and∑i∈I pi ≤ 1,
(ii) For eachi ∈ I there is a subdistribution∆i such thatsi R ∆i ,

(iii) ∆ = ∑i∈I pi ·∆i.

10 Real-Reward Testing for Probabilistic Processes

Proof: Straightforward. 2

An important point here is that a single state can be split into several pieces: that is, the decomposition
of Γ into ∑i∈I pi ·si is not unique.

Definition 4.3 [Weak derivation] Suppose we have subdistributions∆,∆→
k ,∆×

k , for k≥ 0, with the fol-
lowing properties:

∆ = ∆→
0 +∆×

0

∆→
0

τ−→ ∆→
1 +∆×

1...

∆→
k

τ−→ ∆→
k+1+∆×

k+1

Then we call∆′ := ∑∞
k=0∆×

k a weak derivativeof ∆, and write∆ =⇒ ∆′ to mean that∆ can make aweak
derivationto its derivative∆′.

There is always at least one weak derivative of any subdistribution (the subdistribution itself) and there
can be many.

Proposition 4.4 [Transitivity, linearity and decomposition of weak derivations [4]]

(i) If ∆ =⇒ ∆′ and∆′ =⇒ ∆′′ then∆ =⇒ ∆′′.

Let pi ∈ [0,1] for i∈ I with ∑i∈I pi ≤ 1.

(ii) If ∆i =⇒ ∆′
i for all i∈ I then∑i∈I pi ·∆i =⇒ ∑i∈I pi ·∆′

i.

(iii) If ∑i∈I pi ·∆i =⇒ ∆′ then∆′ = ∑i∈I pi ·∆′
i for subdistributions∆′

i such that∆i =⇒ ∆′
i for all i∈ I .

We now use these weak derivations to define, in the standard manner of [13], weak action relations
between derivations; these, together with the refusal relations 6A−→ for A⊆ Act are the key ingredients in
the definition of the failure-simulation preorder.

Definition 4.5 Let ∆ and its variants∆′,∆pre,∆post be subdistributions in a pLTS〈S,Act,→〉.

• For a∈ Act write ∆ a
=⇒ ∆′ whenever∆ =⇒ ∆pre a−→ ∆post=⇒ ∆′, for some∆pre and∆post. Extend

this toActτ by allowing as a special case thatτ=⇒ is simply=⇒, i.e. including identity (rather than
requiring at least oneτ−→).

• For A ⊆ Act ands∈S write s 6A−→ if s 6α−→ for everyα ∈A∪{τ}; write ∆ 6A−→ if s 6A−→ for every
s∈⌈∆⌉.

• More generally write∆ =⇒ 6A−→ if ∆ =⇒ ∆pre for some∆pre such that∆pre 6A−→.

Definition 4.6 [Failure simulation preorder] Define�FS to be the largest relation inS×Dsub(S) such
that if s�FS ∆ then

(i) whenevers α
=⇒ Γ′, for α ∈Actτ , then there is a∆′∈Dsub(S) with ∆ α

=⇒ ∆′ andΓ′
�FS ∆′,

(ii) and whenevers=⇒ 6A−→ then∆ =⇒ 6A−→.

Any relationR ⊆ S×Dsub(S) that satisfies the two clauses above is called afailure simulation. The
failure simulation preorder⊑FS⊆ Dsub(S)×Dsub(S) is defined by letting∆ ⊑FS Γ whenever there is a
∆♮ with ∆ =⇒ ∆♮ andΓ �FS ∆♮.

Note that the simulating process,∆, occurs at the right of�FS, but at the left of⊑FS. The following
lemma will bee needed in Section 6.

Y. Deng, R.J. van Glabbeek, M. Hennessy & C.C. Morgan 11

Lemma 4.7 If Γ �FS ∆ andΓ =⇒ Γ′ then there is a matching transition∆ =⇒ ∆′ such thatΓ′
�FS ∆′.

Proof: Γ �FS ∆ implies by Lemma 4.2 that Γ = ∑
i∈I

pi ·si , si �FS ∆i, ∆ = ∑
i∈I

pi ·∆i.

By Proposition 4.4(iii) there areΓ′
i ∈ Dsub(S) for i∈ I with si =⇒ Γ′

i and Γ′ = ∑pi∈I pi ·Γ′
i . For each

i∈ I we infer fromsi �FS ∆i andsi =⇒ Γ′
i that there is a∆′

i ∈Dsub(S) with ∆i =⇒ ∆′
i andΓ′

i �FS ∆′. Let
∆′ := ∑i∈I pi ·∆′

i . Then Definition 4.1(2) and Proposition 4.4(ii) yieldΓ′
�FS ∆′ and∆ =⇒ ∆′. 2

The failure simulation preorder is preserved under parallel composition with a test and it is sound and
complete for probabilistic must testing of finitary processes.

Theorem 4.8 [3]For finitary processes∆ andΓ,

(i) If ∆ ⊑FS Γ then for anyΩ-testΘ, Θ‖∆ ⊑FS Θ‖Γ.

(ii) ∆ ⊑FS Γ if and only if ∆ ⊑pmustΓ.

5 From derivations to resolutions

In this section we explain how resolutions, on which the definitions of the testing preorders in Defini-
tions 3.4 and 3.5 are based, can be seen as certain kinds of derivations.

Definition 5.1 [Extreme derivatives]A states in a pLTS is calledstableif s 6τ−→, and a subdistribution
∆ is calledstableif every state in its support is stable. We write∆ =⇒≻ ∆′ whenever∆ =⇒ ∆′ and∆′ is
stable, and call∆′ anextremederivative of∆.

Referring to Definition 4.3, we see this means that in the extreme derivation of∆′ from ∆ at every stage a
state must move on if it can, so that every stopping componentcan contain only states whichmuststop:
for s∈ ⌈∆→

k +∆×
k ⌉ we haves∈ ⌈∆×

k ⌉ if and now alsoonly if s 6τ−→.

Lemma 5.2 [Existence and uniqueness of extreme derivatives]

(i) For every subdistribution∆ there exists some (stable)∆′ such that∆ =⇒≻ ∆′.

(ii) In a deterministic pLTS if∆ =⇒≻ ∆′ and∆ =⇒≻ ∆′′ then∆′ = ∆′′.

Proof: We construct a derivation as in Definition 4.3 of a stable∆′ by defining the components∆k,∆×
k

and∆→
k using induction onk. Let us assume that the subdistribution∆k has been defined; in the base case

k = 0 this is simply∆. The decomposition of this∆k into the components∆×
k and∆→

k is carried out by
defining the former to be precisely those states which must stop, i.e. thoses for which s 6τ−→. Formally
∆×

k is determined by:

∆×
k (s) =

{

∆k(s) if s 6τ−→

0 otherwise

Then∆→
k is given by theremainderof ∆k, namely those states which can perform aτ action:

∆→
k (s) =

{

∆k(s) if s τ−→

0 otherwise

Note that these definitions divide the support of∆k into two disjoints sets, namely the support of∆×
k and

the support of∆→
k . Moreover by construction we know that∆→

k
τ−→ Θ for someΘ; we let ∆k+1 be an

arbitrary suchΘ.

12 Real-Reward Testing for Probabilistic Processes

This completes our construction of an extreme derivative asin Definition 4.3 and so we have estab-
lished (i).

For (ii) we observe that in a deterministic pLTS the above choice of∆k+1 is unique, so that the whole
derivative construction becomes unique. 2

Subdistributions are essential in the definition of extreme derivations. Consider a statet that has only
one transition, a selfτ-loop t τ−→ t. Then it diverges and it has a unique extreme derivativeε , the empty
subdistribution. More generally, suppose a subdistribution ∆ diverges, that is there is an infinite sequence
of internal transitions∆ τ−→ ∆1

τ−→ . . .∆k
τ−→ Then one extreme derivative of∆ is ε , but it may have

others.
In the extreme derivative∆ =⇒≻ ∆′, the subdistribution∆′ may be viewed as a final result of an

execution starting in∆ and dynamically resolving nondeterministic choices as theexecution proceeds.
We can tabulate the outcome of this execution in the following manner:

Definition 5.3 [Outcomes]The outcome $Φ ∈ [0,1]Ω of a stable subdistributionΦ is given by $Φ(ω) =

∑{Φ(s) | s∈ ⌈Φ⌉, s ω−→}. For any distributionΦ we write V (Φ) for the set of possible outcomes
{$Φ′ | Φ =⇒≻ Φ′} via extreme derivatives.

Let pi ∈ [0,1] for i∈ I with ∑i∈I pi ≤ 1, and let∆i,Φi , for i ∈ I , be subdistributions. We use∑i∈I pi ·V (∆i)
as shorthand for{∑i∈I pi ·νi | νi ∈ V (∆i)}. By construction, $∑i∈I pi ·Φi = ∑i∈I pi ·$Φi . Using this, we
establish the linearity ofV :

Lemma 5.4 Let pi ∈ [0,1] for i∈ I with ∑i∈I pi ≤ 1. ThenV (∑i∈I pi ·∆i) = ∑i∈I pi ·V (∆i).

Proof: Supposeν ∈ V (∑i∈I pi ·∆i). Thenν = $Φ for some stableΦ with ∑i∈I pi ·∆i =⇒ Φ. By Propo-
sition 4.4(iii) Φ can be written as∑i∈I pi ·Φi for subdistributionsΦi such that∆i =⇒ Φi for all i∈ I ;
moreover, theΦi must be stable. Henceνi := $Φi ∈ V (∆i) and thusν = ∑i∈I pi ·νi ∈ ∑i∈I pi ·V (∆i).

Conversely, supposeν ∈ ∑i∈I pi ·V (∆i), i.e.,ν = ∑i∈I pi ·νi with νi ∈ V (∆i). Then for alli ∈ I there
are stable subdistributionsΦi with νi := $Φi and∆i =⇒ Φi . So∑i∈I pi ·∆i =⇒ ∑i∈I pi ·Φi by Proposi-
tion 4.4(ii). Moreover∑i∈I pi ·Φi is stable andν = ∑i∈I pi ·νi = $∑i∈I pi ·Φi ∈ V (∑i∈I pi ·∆i). 2

The following two examples illustrate that this manner of calculating outcomes often gives the same
result as when resolutions are used.

Example 5.5 (Revisiting Example 3.2.) The pLTS in Figure 4(c) is deterministic and therefore from
part (ii) of Lemma 5.2 it follows thatt‖q1 has a unique extreme derivativeΛ. MoreoverΛ can be
calculated to be∑k≥1

1
2k ·s3, which simplifies to the distributions3. Therefore, since $s3 =

−→ω , it follows
thatV (t‖q1) = {−→ω }. This is exactly the same result as obtained in Example 3.2, using resolutions. 2

Example 5.6 (Revisiting Example 3.3.) The application of the testt to processesq2 is outlined in Fig-
ure 5(c). Consider any extreme derivative∆′ from s0 = t‖q2. Using the notation of Definition 4.3, it is
clear that∆×

0 and∆→
0 must beε ands0 respectively. Similarly,∆×

1 and∆→
1 must beε ands1 respectively.

But s1 is a nondeterministic state, having two possible transitions:

(i) s1
τ−→ Λ0 whereΛ0 has support{s0,s2} and assigns each of them the weight1

2

(ii) s1
τ−→ Λ1 whereΛ1 has the support{s3,s4}, again dividing the mass equally among them.

So there are many possibilities for∆2; from Definition 4.3 one sees that in fact∆2 can be of the form

p·Λ0+(1− p) ·Λ1 (7)

for any choice ofp∈ [0,1].

Y. Deng, R.J. van Glabbeek, M. Hennessy & C.C. Morgan 13

Let us consider one possibility, an extreme one wherep is chosen to be 0; only the transition (ii) above
is used. Here∆→

2 is the subdistribution1
2s4, and∆→

k = ε wheneverk > 2. A simple calculation shows
that in this case the extreme derivative generated isΛe

1 =
1
2s3+

1
2s6 which implies that12

−→ω ∈ V (t‖q2).
Another possibility for∆2 is Λ0, corresponding top = 1 in (7) above. Continuing this derivation

leads to∆3 being 1
2 ·s1+

1
2 ·s5; thus∆×

3 = 1
2 ·s5 and∆→

3 = 1
2 ·s1. Now in the generation of∆4 from ∆→

3
again we resolve a transition from the nondeterministic state s1, by choosing some arbitraryp∈ [0,1] in
(7). Suppose we choosep=1 every time, completely ignoring transition (ii) above. Then the extreme
derivative generated is

Λe
0 = ∑

k≥1

1
2k ·s5

which simplifies to the distributions5. This in turn means that−→ω ∈ V (t‖q2).
We have seen two possible derivations of extreme derivatives froms0. But there are many others. In

general whenever∆→
k is of the formq·s1 we have to resolve the nondeterminism by choosing ap∈ [0,1]

in (7) above; moreover each such choice is independent. It turns out that every extreme derivative∆′

of s0 is of the formq ·Λe
0 +(1−q) ·Λe

1 for some choice ofq∈ [0,1], which implies thatV (t‖q2) is the
convex closure of the set{1

2
−→ω ,

−→ω }.
Again this is similar to the results obtained using resolutions, in Example 3.3. 2

Unfortunately there is not an exact agreement between usingresolutions and extreme derivations, as the
next example shows.

Example 5.7 Let p be a process that first does ana-action, to the point distributionq, and then diverges,
via theτ-loopq τ−→ q. Let t be the test used in Examples 3.2 and 3.3. It is easy to see that the distribution
p‖t has a unique resolution, with expected outcome−→ω ; thusA (t, p) = {−→ω }.

It turns out thatt‖p also has a unique extreme derivative; unfortunately this turns out to beε. Since
$ε = 0 this means thatV (t‖p) =

−→
0 ; so in this case, which is actually nonprobabilistic, there is a

difference between the use of resolutions and extreme derivations. 2

To rectify this anomaly, we restrict our attention to a subset of pLTSs.

Definition 5.8 [ω-respecting]A pLTS 〈S,Ω,→〉 is said to beω-respectingwhen it satisfies the unique-
ness requirement (A) from Page 5, ands ω−→, for anyω ∈ Ω, impliess 6τ−→.

It is straightforward to modify the pLTS of applications of tests to processes into one that it isω-
respecting, namely by removing all transitionss τ−→ ∆ for statess with s ω−→; we call thispruning.
We denote the result of pruning the pLTS〈S,Ω,→〉 by 〈S,Ω, [→]〉, and the distributionΦ in this pruned
pLTS by[Φ].

Example 5.9 (Revisiting Example 5.7) Letp,q andt be as in Example 5.7. As we have already seen,
t‖p has the unique derivativeε. But by pruning it we obtain a different extreme derivative.If we denote
the state reachable fromt with the outgoingω-transition, in Figure 5(c), asω also, then[t‖p] has the
unique extreme derivative[ω‖q]. Since $[ω‖q] = −→ω , we obtainV ([t‖p]) = {−→ω }; this is exactly the
result obtained using resolutions. 2

Note that pruning has no effect on Examples 5.5 and 5.6, as thepLTSs concerned are alreadyω-
respecting. It also has no effect on the closure of the failure simulation preorder under parallel com-
position:

Lemma 5.10 [4]For finitary processes∆ andΓ, if ∆ ⊑FS Γ then for anyΩ-testΘ, [Θ‖∆]⊑FS [Θ‖Γ].

14 Real-Reward Testing for Probabilistic Processes

In the remainder of this section we show that, at least inω-respecting pLTSs, using resolutions
to calculate outcomes, as used in the definition of testing (Definitions 3.4 and 3.5), leads to the same
results as using extreme derivations. In the former a set of deterministic structures are associated with
a distribution, while in the latter nondeterministic choices are resolved dynamically as the derivation
proceeds. We start by showing that resolution-based testing is insensitive to pruning. LetA p(Φ) denote
the set of vectors

{ExpΛ(V〈R,Ω,→R〉) | 〈R,Λ,→R〉 is a resolution of[Φ]} .

Proposition 5.11 For any distributionΦ in a pLTS〈S,Ω,→〉 we have thatA p(Φ) = A (Φ).

Proof: “⊇”: Let 〈R,Λ,→R〉 be a resolution ofΦ. Then, following Definition 3.1,〈R, [Λ], [→R]〉 is a
resolution of[Φ] and, by (3), Exp[Λ](V〈R,Ω,[→R]〉) = ExpΛ(V〈R,Ω,→R〉).

“⊆”: Let 〈R,Λ,→R〉 be a resolution of[Φ] with resolving function f . We construct a resolution
〈R′,Λ,→′

R〉 of Φ as a random extension of〈R,Λ,→R〉. For every pair(s,α)∈S×Ωτ with s α−→ pick

a distributionΨ(s,α)∈D(S) such thats α−→ Ψ(s,α). Now defineR′ := R
.
∪ (S×N), where

.
∪ denotes

the disjoint union operation, and obtain→′
R from →R by adding (A) a transition(s,k) α−→′

R Ψ(s,α)
k+1 for

eachk∈N and eachs∈S with s α−→, and (B) a transitionr τ−→′
R Ψ(f (r),τ)

0 for eachr∈R with f (r) τ−→
as well asf (r) ω−→ for someω ∈Ω. HereΨ(s,α)

k+1 ∈ D(S×{k+1}) is given byΨ(s,α)
k+1 (t,k+1) = Ψ(s,α)(t)

for all t∈S. The resolving functionf is extended byf (s,k) := s. Using Definition 3.1 it follows that
〈R′,Λ,→′

R〉 is a resolution ofΦ and, again by (3), ExpΛ(V〈R′,Ω,→′
R〉
) = ExpΛ(V〈R,Ω,→R〉). 2

The rest of this section is devoted to showing thatV ([Φ]) = A p(Φ) for any compositionΦ = Θ‖∆ of a
testΘ and process∆; this amounts to showing

{$Φ′ | Φ =⇒≻ Φ′}= {ExpΛ(V〈R,Ω,→〉) | 〈R,Λ,→〉 is a resolution ofΦ}

for any distributionΦ in anω-respecting pLTS〈S,Ω,→〉.
Let us see how an extreme derivation can be viewed as a method for dynamically generating a reso-

lution.

Proposition 5.12 [Resolutions from extreme derivatives]Let Φ =⇒≻ Φ′ in a pLTS〈S,Ω,→〉. Then
there is a resolution〈R,Λ,→R〉 of Φ, with resolving functionf , such thatΛ =⇒≻R Λ′ for someΛ′ for
which Φ′ = Imgf (Λ′).

Proof: Consider an extreme derivation ofΦ =⇒≻ Φ′ as given in Definition 4.3 where allΦ×
k must be

stable:
Φ = Φ0, Φk = Φ×

k +Φ→
k , Φ→

k
τ−→ Φk+1, Φ′ = ∑∞

k=0 Φ×
k .

By Lemma 4.2,Φ→
k

τ−→ Φk+1 implies that there are statessik ∈Sand distributionsΦi(k+1)∈D(S), such
that

Φ→
k = ∑i∈Ik pik ·sik, sik

τ−→ Φi(k+1) for eachi ∈ Ik and Φk+1 = ∑i∈Ik pik ·Φi(k+1) .

Let Φ×
ik(s) :=

{

Φik(s) if s 6τ−→
0 if s τ−→

. SinceΦ×
k (s) =

{

Φk(s) if s 6τ−→
0 if s τ−→

it follows thatΦ×
k+1 = ∑i∈Ik pik ·Φ×

i(k+1).

We will now define the resolution〈R,Λ,→R〉 and the resolving functionf . The set of statesR is
(S×N)∪⋃

k∈N(Ik×{k}). The resolving functionf : R→ Smaps(s,k)∈S×N to sand(i,k)∈ Ik×{k} to
sik ∈S. The second componentk of a state counts how many transitions have fired already: each transition
in →R goes from a state(i,k) or (s,k) to a distribution over(S∪ Ik+1)×{k+1}.

Define the subdistributionsΛ×
k ∈Dsub(S×{k}) and Λ→

k ∈Dsub(Ik×{k}) by Λ×
k (s,k) = Φ×

k (s) and
Λ→

k (i,k) = pik. Let Λk := Λ×
k + Λ→

k and Λ := Λ0. Furthermore, for allk > 0 and i∈ Ik−1, define

Y. Deng, R.J. van Glabbeek, M. Hennessy & C.C. Morgan 15

Λik ∈Dsub((S∪ Ik)×{k}) by

Λik(s,k) = Φ×
ik(s) and Λik(j,k) = p jk ·

Φik(sjk)

Φk(sjk)

for j∈ Ik. We introduce the transitions(i,k) τ−→R Λi(k+1) for k ≥ 0 andi∈ Ik. Moreover, for each state
s∈Sand labelα ∈Actτ such thats α−→, pick a transitions α−→ Ψ, and add the transition(s,k) α−→R Ψk+1

to →R, for all k∈N. HereΨk+1 is the distribution withΨk+1(t,k+1) = Ψ(t) for all t∈S. Likewise,
for eachk ∈ N, i∈ Ik and ω ∈Ω such thatsik

ω−→, pick a transitionsik
ω−→ Ψ, and add the transition

(i,k) ω−→R Ψk+1 to →R. This ends the definition of the resolution〈R,Λ,→R〉 and the resolving function
f . By construction,〈R,Ω,→R〉 is a deterministic pLTS. We now check thatf satisfies the requirements
for a resolving function of Definition 3.1.

(i) Img f (Λk)(s) = Λk(s,k)+ ∑
sik=s

Λk(i,k) = Λ×
k (s,k)+ ∑

sik=s
pik = Φ×

k (s)+Φ→
k (s) = Φk(s)

for all s∈S, so Imgf (Λk) = Φk, and in particular Imgf (Λ) = Φ.
(ii) Let r α−→R Γ for α ∈Ωτ . In caser = (s,k) it must be thatΓ = Ψk+1 and f (r) = s α−→ Ψ =

Imgf (Ψk+1). Likewise, in caser=(i,k) andα ∈Ω it must be thatΓ = Ψk+1 and f (r) = sik
α−→ Ψ=

Imgf (Ψk+1). The remaining case isr =(i,k), α = τ andΓ = Λi(k+1). Then f (r) = sik
τ−→ Φi(k+1),

so it suffices to show that Imgf (Λik) = Φik for all k∈N andi∈ Ik. For anys∈Swe have

Imgf (Λik)(s) = Λik(s,k)+ ∑
sjk=s

Λik(j,k) = Φ×
ik(s)+ ∑

sjk=s
p jk ·

Φik(sjk)

Φk(sjk)
= Φ×

ik(s)+
Φik(s)
Φk(s)

· ∑
sjk=s

p jk .

In cases 6τ−→ we havesjk = s for no j∈ Ik, so Imgf (Λik)(s) = Φ×
ik(s) = Φik(s).

In cases τ−→ we haveΦ×
ik(s) = 0 and∑sjk=s p jk = Φ→

k (s) = Φk(s), so again Imgf (Λik)(s) = Φik(s).

(iii) Let f (r) α−→ for α ∈Ωτ . By construction there is aΨk+1 such thatr α−→R Ψk+1.
Hence〈R,Λ,→R〉 is a resolution ofΦ. We have:

∑
i∈Ik

pik ·Λi(k+1)(s,k+1) = ∑
i∈Ik

pik ·Φ×
i(k+1)(s) = Φ×

k+1(s) = Λ×
k+1(s,k+1) = Λk+1(s,k+1)

∑
i∈Ik

pik ·Λi(k+1)(j,k+1) = ∑
i∈Ik

pik ·p j(k+1) ·
Φi(k+1)(sj(k+1))

Φk+1(sj(k+1))
= p j(k+1) = Λ→

k+1(j,k+1) = Λk+1(j,k+1).

HenceΛk+1 = ∑i∈Ik pik ·Λi(k+1). Since alsoΛ→
k = ∑i∈Ik pik ·(i,k) and (i,k) τ−→R Λi(k+1), Lemma 4.2

yieldsΛ→
k

τ−→R Λk+1. Let Λ′ = ∑∞
k=0 Λ×

k . Then, by Definition 4.3,Λ =⇒≻R Λ′.
By construction Imgf (Λ×

k) = Φ×
k for all k∈N. Hence Imgf (Λ′) = ∑∞

k=0 Imgf (Λ×
k) = ∑∞

k=0Φ×
k = Φ′.

2

The converse is somewhat simpler.

Proposition 5.13 [Extreme derivatives from resolutions]Let 〈R,Λ,→R〉 be a resolution of a subdis-
tribution Φ in a pLTS〈S,Ω,→〉 with resolving functionf . ThenΛ =⇒≻R Λ′ impliesΦ =⇒≻ Imgf (Λ′).

Proof: The definition of Imgf implies that Imgf (∑i pi ·Ψi) = ∑i pi · Imgf (Ψi). FurthermoreΨ τ−→ Ψ′

implies Imgf (Ψ) τ−→ Imgf (Ψ′). Namely, by Lemma 4.2,Ψ τ−→ Ψ′ implies

Ψ = ∑i∈I pi ·si , si
τ−→ Ψi for eachi ∈ I and Ψ′ = ∑i∈I pi ·Ψi

which, using Definition 3.1, entails

16 Real-Reward Testing for Probabilistic Processes

Imgf (Ψ) = ∑i∈I pi · f (si), f (si)
τ−→ Imgf (Ψi) for eachi ∈ I and Imgf (Ψ′) = ∑i∈I pi · Imgf (Ψi).

Hence Imgf (Ψ) τ−→ Imgf (Ψ′).
Now consider any derivation ofΛ=⇒≻R Λ′ along the lines of Definition 4.3. By systematically apply-

ing the functionf to the component subdistributions in this derivation we geta derivation Imgf (Λ) =⇒
Imgf (Λ′), that isΦ =⇒ Imgf (Λ′). To show that Imgf (Λ′) is actually an extreme derivative it suffices to
show thats is stable for everys∈ ⌈Imgf (Λ′)⌉. But if s∈ ⌈Imgf (Λ′)⌉ then by definition there is some
t ∈ ⌈Λ′⌉ such thats= f (t). SinceΛ =⇒≻R Λ′ the statet must be stable. The stability ofs now follows
from requirement (iii) of Definition 3.1. 2

Our next step is to relate the outcomes extracted from extreme derivatives to those extracted from
the corresponding resolutions. This requires some analysis of the evaluation functionV applied toω-
respecting deterministic pLTSs. We show that the functionF defined in (3) on Page 6 and its least fixed
pointV are continuous with respect to the standard Euclidean metric.

Definition 5.14 [Continuous functions]An ω-chain in a complete latticeL is a sequence of elements
{cn | n≥ 0} satisfyingci ≤ ci+1. Since the lattice is complete,ω-chains have least upper bounds; we
denote them by

⊔

n≥0cn. A function f : L → L is said to be (ω)-continuous [19] if it preserves the least
upper bounds ofω-chains:

f (
⊔

n≥0

cn) =
⊔

n≥0

f (cn) .

Lemma 5.15 [Exchange of suprema]Let functiong :N×N→R be such that it is

(i) monotonic in both of its arguments separately, so thati ≤ i′ impliesg(i, j) ≤ g(i′, j) for all j, and
j ≤ j ′ impliesg(i, j) ≤ g(i, j ′) for all i, and

(ii) bounded above, so that there is ac∈R≥0 with g(i, j) ≤ c for all i, j.

Then
lim
i→∞

lim
j→∞

g(i, j) = lim
j→∞

lim
i→∞

g(i, j).

Proof: Conditions (i) and (ii) guarantee the existence of all the limits. Moreover, for a non-decreasing
sequence its limit and supremum agree, and both sides equal the supremum of allg(i, j) for i, j ∈N. In
fact, (R,≤) is a complete partial order (CPO), and it is a basic result of CPOs [19] that

⊔

i∈N(⊔j∈Ng(i, j)) =
⊔

j∈N(⊔i∈Ng(i, j)). 2

The following technical proposition states that some real functions satisfy the property ofbounded con-
tinuity, which allows the exchange of limit and sum operations. It plays a crucial role in proving the
continuity ofF .

Proposition 5.16 [Bounded continuity]Given a functionf :N×N→ R≥0 which satisfies the follow-
ing conditions:

C1. f is monotonic in the second parameter, i.e.j1 ≤ j2 implies f (i, j1)≤ f (i, j2) for all i, j1, j2 ∈N;

C2. for any i ∈N, the limit lim j→∞ f (i, j) exists;

C3. the partial sumsSn = ∑n
i=0 lim j→∞ f (i, j) are bounded, i.e. there exists somec ∈ R≥0 such that

Sn ≤ c for all n≥ 0;

Y. Deng, R.J. van Glabbeek, M. Hennessy & C.C. Morgan 17

then it holds that
∞

∑
i=0

lim
j→∞

f (i, j) = lim
j→∞

∞

∑
i=0

f (i, j).

Proof: Let g :N×N→ R≥0 be the function defined byg(n, j) = ∑n
i=0 f (i, j). It is easy to see thatg is

monotonic in both arguments. ByC1 andC2, we have thatf (i, j) ≤ lim j→∞ f (i, j) for any i, j ∈ N. So
for any j,n∈N we have that

g(n, j) =
n

∑
i=0

f (i, j) ≤
n

∑
i=0

lim
j→∞

f (i, j) ≤ c

according toC3. In other words,g is bounded above. Therefore we can apply Lemma 5.15 and obtain

lim
n→∞

lim
j→∞

n

∑
i=0

f (i, j) = lim
j→∞

lim
n→∞

n

∑
i=0

f (i, j). (8)

For any j∈N, the sequence{g(n, j)}n≥0 is nondecreasing and bounded, so its limit∑∞
i=0 f (i, j) exists.

That is,
lim
n→∞

n

∑
i=0

f (i, j) =
∞

∑
i=0

f (i, j). (9)

In view of C2, we have that, for any givenn∈N, the limit lim j→∞ ∑n
i=0 f (i, j) exists and

n

∑
i=0

lim
j→∞

f (i, j) = lim
j→∞

n

∑
i=0

f (i, j). (10)

By C3 the sequence{Sn}n≥0 is bounded. Since it is also nondecreasing, it converges to
∞

∑
i=0

lim
j→∞

f (i, j).
That is,

lim
n→∞

n

∑
i=0

lim
j→∞

f (i, j) =
∞

∑
i=0

lim
j→∞

f (i, j). (11)

Hence the left-hand side of the desired equality exists. By combining (8)-(11) we obtain the result that∞

∑
i=0

lim
j→∞

f (i, j) = lim
j→∞

∞

∑
i=0

f (i, j). 2

Lemma 5.17 Let R be a set andh : R→ [0,1]Ω. Furthermore, let∆0 ≤ ∆1 ≤ ·· · be anω-chain of
subdistributions overR— here∆ ≤ ∆′ iff ∆(r)≤ ∆′(r) for all r ∈ R. Then Exp⊔

n≥0 ∆n
h=

⊔

n≥0 Exp∆n
h.

Proof:
(

Exp⊔
n≥0 ∆n

h
)

(ω) =
(

∑r∈R(
⊔

n≥0 ∆n)(r)·h(r)
)

(ω)
=

(

∑r∈R(
⊔

n≥0 ∆n(r))·h(r)
)

(ω)
=

(

∑r∈R
⊔

n≥0(∆n(r)·h(r))
)

(ω)
= ∑r∈R

⊔

n≥0(∆n(r)·h(r)(ω))
= ∑r∈Rlimn→∞(∆n(r)·h(r)(ω))
= limn→∞ ∑r∈R(∆n(r)·h(r)(ω)) by Proposition 5.16
=

⊔

n≥0∑r∈R(∆n(r)·h(r)(ω))
=

(

⊔

n≥0∑r∈R(∆n(r)·h(r))
)

(ω)
=

(

⊔

n≥0Exp∆n
h
)

(ω).

In the above reasoning, Proposition 5.16 can be applied because we can definef : R×N→ R≥0 by
letting f (r,n) = ∆n(r) ·h(r)(ω) and checking thatf satisfies the three conditions in Proposition 5.16. If
R is finite, we can extend it to a countable setR′ ⊇ Rand requiref (r ′,n) = 0 for all r ′ ∈ R′\Randn∈N.

18 Real-Reward Testing for Probabilistic Processes

1. f satisfies conditionC1. For anyr ∈ Rand j1, j2 ∈N, if j1 ≤ j2 then∆ j1 ≤ ∆ j2. It follows that

f (r, j1) = ∆ j1(r) ·h(r)(ω) ≤ ∆ j2(r) ·h(r)(ω) = f (r, j2).

2. f satisfies conditionC2. For anyr ∈ R, the sequence{∆n(r) ·h(r)(ω)}n≥0 is nondecreasing and
bounded byh(r)(ω). It follows that the limit limn→∞ f (r,n) exists.

3. f satisfies conditionC3. For any finiteR′′ ⊆ R, the partial sum∑r∈R′′ limn→∞ f (r,n) is bounded
because

∑r∈R′′ limn→∞ f (r,n) = limn→∞ ∑r∈R′′ f (r,n) = limn→∞ ∑r∈R′′ ∆n(r) ·h(r)(ω)
≤ limn→∞ ∑r∈R′′ ∆n(r) ≤ limn→∞ ∑r∈R∆n(r) ≤ limn→∞ 1= 1. 2

Lemma 5.18 Consider a deterministic pLTS〈R,Ω,→〉. The functionF defined in (3) is continuous.

Proof: Let f0 ≤ f1 ≤ ... be an increasing chain inR→ [0,1]Ω. We need to show that

F (
⊔

n≥0

fn) =
⊔

n≥0

F (fn) (12)

For anyr ∈ R, we are in one of the following three cases:
1. r ω−→ for someω ∈ Ω. We have

F (
⊔

n≥0 fn)(r)(ω) = 1 by (3)
=

⊔

n≥0 1
=

⊔

n≥0F (fn)(r)(ω)
= (

⊔

n≥0F (fn))(r)(ω)

and
F (

⊔

n≥0

fn)(r)(ω ′) = 0= (
⊔

n≥0

F (fn))(r)(ω ′)

for all ω ′ 6= ω .

2. r 6→. Similar to the last case. We have

F (
⊔

n≥0

fn)(r)(ω) = 0= (
⊔

n≥0

F (fn))(r)(ω)

for all ω ∈ Ω.

3. Otherwise,r τ−→ ∆ for some∆ ∈ D(R). Then we infer that, for anyω ∈ Ω,

F (
⊔

n≥0 fn)(r)(ω) = Exp∆(
⊔

n≥0 fn)(ω) by (3)
= ∑r∈⌈∆⌉∆(r) · (

⊔

n≥0 fn)(r)(ω)

= ∑r∈⌈∆⌉∆(r) · (
⊔

n≥0 fn(r))(ω)

= ∑r∈⌈∆⌉
⊔

n≥0 ∆(r) · fn(r)(ω)

= ∑r∈⌈∆⌉ limn→∞ ∆(r) · fn(r)(ω)

= limn→∞ ∑r∈⌈∆⌉∆(r) · fn(r)(ω) by Proposition 5.16
=

⊔

n≥0∑r∈⌈∆⌉∆(r) · fn(r)(ω)

=
⊔

n≥0Exp∆(fn)(ω)
=

⊔

n≥0F (fn)(r)(ω)
= (

⊔

n≥0F (fn))(r)(ω) .

In the above reasoning, Proposition 5.16 can be applied because we can define the functionf :
R×N→R≥0 by letting f (r,n) = ∆(r) · fn(r)(ω) and checking thatf satisfies the three conditions
in Proposition 5.16. IfR is finite, we can extend it to a countable setR′ ⊇Rand requiref (r ′,n) = 0
for all r ′ ∈ R′\Randn∈N.

Y. Deng, R.J. van Glabbeek, M. Hennessy & C.C. Morgan 19

(a) f satisfies conditionC1. For anyr ∈ R and j1, j2 ∈ N, if j1 ≤ j2 then f j1 ≤ f j2. It follows
that

f (r, j1) = ∆(r) · f j1(r)(ω) ≤ ∆(r) · f j2(r)(ω) = f (r, j2).

(b) f satisfies conditionC2. For anyr ∈ R, the sequence{∆(r) · fn(r)(ω)}n≥0 is nondecreasing
and bounded by∆(r). It follows that the limit limn→∞ f (r,n) exists.

(c) f satisfies conditionC3. For anyR′′ ⊆ R, the partial sum∑r∈R′′ limn→∞ f (r,n) is bounded
because

∑
r∈R′′

lim
n→∞

f (r,n) = ∑
r∈R′′

lim
n→∞

∆(r) · fn(r)(ω) ≤ ∑
r∈R′′

∆(r)≤ ∑
r∈R

∆(r) = 1. 2

The continuity ofF implies that its fixed pointV can be captured by a chain of approximants. The
functionsVn, n≥ 0 are defined by induction onn:

V
0(r)(ω) = 0 for all r ∈ Randω ∈ Ω

V
n+1 = F (Vn)

NowV=
⊔

n≥0 V
n. This is used in the following result.

Lemma 5.19 Let Λ be a subdistribution in anω-respecting deterministic pLTS〈R,Ω,→R〉. If Λ =⇒≻ Λ′

then ExpΛ(V〈R,Ω,→R〉) = ExpΛ′(V〈R,Ω,→R〉).

Proof: For simplicity let us writeV(∆) for Exp∆(V〈R,Ω,→R〉) for any∆. Since the pLTS isω-respecting
we know thats τ−→ ∆ implies s 6ω−→ for any ω . Therefore, from the definition of the functionalF we
have thats τ−→ ∆ impliesVn+1(s) = V

n(∆), whence by lifting and linearity we get:

if ∆ τ−→ ∆′ thenVn+1(∆) = V
n(∆′) for all n≥ 0.

Now supposeΛ =⇒≻ Λ′. Then

Λ = Λ0, Λk = Λ×
k +Λ→

k , Λ→
k

τ−→ Λk+1, Λ′ =
∞

∑
k=0

Λ×
k .

Using in the base case thatV
0(∆)(ω)=0 for each∆, a straightforward induction onn yields, for allℓ≥0,

V
n(Λℓ) =

n

∑
k=0

V
n−k(Λ×

ℓ+k) . (13)

NamelyVn+1(Λℓ) = V
n+1(Λ×

ℓ +Λ→
ℓ) = V

n+1(Λ×
ℓ)+V

n+1(Λ→
ℓ) =V

n+1(Λ×
ℓ)+V

n(Λℓ+1)
induction
=

V
n+1(Λ×

ℓ)+∑n
k=0V

n−k(Λ×
ℓ+1+k) = V

n+1(Λ×
ℓ)+∑n+1

k=1V
n+1−k(Λ×

ℓ+k) = ∑n+1
k=0V

n+1−k(Λ×
ℓ+k).

SinceΛ×
k is stable, we have

V
m(Λ×

k) = V(Λ×
k) for everyk,m≥ 0. (14)

We conclude by reasoning

V(Λ) =
⊔

n≥0V
n(Λ) by continuity ofF

=
⊔

n≥0∑n
k=0V

n−k(Λ×
k) from (13) above, takingℓ= 0

=
⊔

n≥0∑n
k=0V(Λ

×
k) by (14)

=
⊔

n≥0V(∑n
k=0 Λ×

k) by linearity ofV
= V(

⊔

n≥0∑n
k=0 Λ×

k) by Lemma 5.17
= V(∑∞

k=0Λ×
k)

= V(Λ′) . 2

20 Real-Reward Testing for Probabilistic Processes

We are now ready to compare the two methods for calculating the set of outcomes associated with a
subdistribution:

• using extreme derivatives and the reward function $ from Definition 5.3
• using resolutions and the evaluation functionV from page 6.

Theorem 5.20 In anω-respecting pLTS〈S,Ω,→〉, the following statements hold.

(a) If Φ =⇒≻ Φ′ then there is a resolution〈R,Λ,→R〉 of Φ such that ExpΛ(V〈R,Ω,→R〉) = $Φ′.

(b) For any resolution〈R,Λ,→R〉 of Φ, there exists aΦ′ such thatΦ=⇒≻Φ′ and ExpΛ(V〈R,Ω,→R〉)= $Φ′.

Proof: SupposeΦ =⇒≻ Φ′. By Proposition 5.12, there is a resolution〈R,Λ,→R〉 of Φ with resolving
function f and a subdistributionΛ′ such thatΛ =⇒≻ Λ′ andΦ′ = Imgf (Λ′). By Lemma 5.19, we have

ExpΛ(V) = ExpΛ′(V). (15)

SinceΛ′ is an extreme derivative, all the statess in its support are stable, soV(s)(ω) = 0 if s 6ω−→, for all
ω ∈Ω. Hence

ExpΛ′(V)(ω) = ∑
s∈⌈Λ′⌉

Λ′(s) ·V(s)(ω) = ∑
s∈⌈Λ′⌉, s

ω−→
Λ′(s) = $Λ′(ω) . (16)

Furthermore, for allt∈⌈Φ′⌉, Φ′(t) = Imgf (Λ′)(t) = ∑ f (s)=t Λ′(s), so, for allω ∈ Ω,

$Φ′(ω) = ∑
t∈⌈Φ′⌉, t

ω−→
Φ′(t) = ∑

t∈⌈Φ′⌉, t
ω−→

Imgf (Λ
′)(t) = ∑

t∈⌈Φ′⌉, t
ω−→

∑ f (s)=t Λ′(s) = ∑
s∈⌈Λ′⌉, f (s)

ω−→
Λ′(s) = $Λ′(ω) ,

where in the last step we the use the property of resolutions that f (s) ω−→ iff s ω−→. Combining this with
(15) and (16) yields that ExpΛ(V) = $Φ′.

To prove part (b), suppose that〈R,Λ,→R〉 is a resolution ofΦ with resolving functionf , so thatΦ =
Imgf (Λ). We know from Lemma 5.2 that there exists a (unique) subdistribution Λ′ such thatΛ =⇒≻ Λ′.
By Proposition 5.13 we have thatΦ =⇒≻ Imgf (Λ′). The same arguments as in the other direction show
that ExpΛ(V) = $(Imgf (Λ′)). 2

A direct consequence of the above theorem is thatV (Φ) = A (Φ) for any subdistributionΦ in an ω-
respecting pLTS〈S,Ω,→〉. This implies thatV ([Φ]) = A p(Φ) for any subdistributionΦ in a pLTS
〈S,Ω,→〉. This, in turn, together with Proposition 5.11, implies thefollowing result.

Corollary 5.21 For any subdistributionΦ in a pLTS〈S,Ω,→〉 we have thatV ([Φ]) = A (Φ). 2

6 Agreement of nonnegative- and real-reward must testing

In this section we prove the agreement of⊑nrmustwith ⊑rr must for finitary convergent processes, by using
failure simulation [3], recalled in Definition 4.6, as a stepping stone.

Because we prune our pLTSs before extracting values from them, we will be concerned mainly with
ω-respecting structures. Moreover, we require the pLTSs to be convergentin the sense that there is
no wholly divergent states, i.e. with s=⇒ ε. It follows from Theorem 8 in [3], in combination with
Lemma 4.4(iii), that on a finitary convergent pLTS, if∆ =⇒ ∆′ with ∆ a full distribution, then∆′ is a full
distribution.

Lemma 6.1 Let ∆ andΓ be full distributions in anω-respecting finitary convergent pLTS〈S,Ω,→〉. If
distributionΓ is stable andΓ �FS ∆, then $Γ ∈ V (∆).

Y. Deng, R.J. van Glabbeek, M. Hennessy & C.C. Morgan 21

Proof: We first show that ifs is stable ands�FS ∆ with ∆ a full distribution, then $s∈ V (∆). Sinces is
stable, we have only two cases:

(i) s 6→ Here $s=
−→
0 , where

−→
0 (ω) = 0 for all ω ∈ Ω. Sinces�FS ∆ we have∆ =⇒ ∆′ with ∆′ 6→,

whence in fact∆ =⇒≻ ∆′ and $∆′ =
−→
0 . Thus $s=

−→
0 ∈ V (∆).

(ii) s ω−→ Γ′ for someΓ′ Here $s=−→ω , and sinces�FS ∆ we have∆ =⇒ ∆′ ω−→. As remarked above,
also∆′ is a full distribution. Hence $∆′=−→ω . Because the pLTS isω-respecting, in fact∆ =⇒≻ ∆′

and so again $s=−→ω ∈ V (∆).
Now for the general case we supposeΓ �FS ∆. By Lemma 4.2 there is an index setI and statessi ,
subdistributions∆i and probabilitiespi for i ∈ I , with ∑i∈I pi ≤ 1, such that

Γ = ∑i∈I pi ·si , si �FS ∆i for eachi ∈ I and ∆ = ∑i∈I pi ·∆i.

Since∆ is full, ∑i∈I pi = 1 and the∆i are full distributions. SinceΓ is stable, each statesi is stable. From
above we have that $si ∈ V (∆i) for all i ∈ I , and so $Γ = ∑i∈I pi ·$si ∈ ∑i∈I pi ·V (∆i) = V (∆), using
Lemma 5.4. 2

Lemma 6.2 Let ∆ and Γ be full distributions in anω-respecting finitary convergent pLTS〈S,Ω,→〉.
Then∆ ⊑FS Γ impliesV (∆)⊇ V (Γ).
Proof: Let Γ,∆ ∈ D(S). We first claim that

(i) If ∆ =⇒ ∆′ thenV (∆′)⊆ V (∆).

(ii) If Γ �FS ∆, then we haveV (Γ)⊆ V (∆).
The first claim holds because if∆′ =⇒≻ ∆′′ then ∆ =⇒ ∆′ =⇒≻ ∆′′, i.e. every extreme derivative of
∆′ is also an extreme derivative of∆. For the second claim, we assumeΓ �FS ∆. For anyΓ =⇒≻ Γ′

Lemma 4.7 gives a matching transition∆ =⇒ ∆′ such thatΓ′
�FS ∆′. By definitionΓ′ is stable and since

〈S,Ω,→〉 is finitary and convergent∆′ andΓ′ must be full. It follows from Lemma 6.1 and Claim (i) that
$Γ′ ∈ V (∆′)⊆ V (∆). Consequently, we obtainV (Γ)⊆ V (∆).

Now suppose∆ ⊑FS Γ. By definition there exists some∆′ such that∆ =⇒ ∆′ andΓ �FS ∆′. By the
above two claims we obtainV (Γ)⊆ V (∆′)⊆ V (∆). 2

This lemma shows that the failure-simulation preorder is a very strong relation in the sense that if∆ is
related toΓ by the failure-simulation preorder then the set of outcomesgenerated by∆ includes the set of
outcomes given byΓ. It is mainly due to this strong property that we can show thatthe failure-simulation
preorder is sound for the real-reward must-testing preorder. Convergence is a crucial condition in this
lemma.

Theorem 6.3 For any finitary convergent processes∆ andΓ, if ∆ ⊑FS Γ then we have that∆ ⊑rr mustΓ.

Proof: We reason as follows.

∆ ⊑FS Γ
implies [Θ‖∆]⊑FS [Θ‖Γ] Lemma 5.10, for anyΩ-testΘ
implies V ([Θ‖∆])⊇ V ([Θ‖Γ]) [·] is ω-respecting; Lemma 6.2
iff A (Θ,∆)⊇ A (Θ,Γ) Corollary 5.21
implies h·A (Θ,∆)⊇ h·A (Θ,Γ) for anyh∈ [−1,1]Ω

implies
d

h·A (Θ,∆)≤
d

h·A (Θ,Γ) for anyh∈ [−1,1]Ω

iff ∆ ⊑Ω
rr mustΓ .

22 Real-Reward Testing for Probabilistic Processes

Note that in the second line above, both[Θ‖∆] and[Θ‖Γ] are convergent, since for any convergent process
Ξ and finite processΘ, by induction on the structure ofΘ, it can be shown that the compositionΘ‖Ξ is
also convergent. Furthermore, since processes∆,Γ and testsΘ are defined to be full distributions, also
[Θ‖∆] and[Θ‖Γ] are full. 2

The proof of the above theorem is subtle. The failure-simulation preorder is defined via weak derivations
(cf. Definition 4.6), while the reward must-testing preorder is defined in terms of resolutions (cf. Defini-
tion 3.5). Fortunately, we have shown in Corollary 5.21 thatwe can just as well characterise the reward
must-testing preorder in terms of weak derivations. Based on this observation, the proof was carried out
by exploiting Lemmas 5.10 and 6.2.

This result does not extend to divergent processes. One witness example is given in Figure 1. A
simpler example is as follows. Let∆ be a process that diverges, by performing aτ-loop only, and letΓ
be a process that merely performs a single actiona. It holds that∆ ⊑FS Γ because∆ =⇒ ε and the empty
subdistribution can failure-simulate any processes. However, if we apply the testt from Example 3.2
again, and the reward tupleh with h(ω) =−1, then

d
h·A (t,∆) =

d
h·V ([t‖∆]) =

d
h· {$ε} =

d
{0} = 0d

h·A (t,Γ) =
d

h·V ([t‖Γ]) =
d

h· {−→ω } =
d
{−1} = −1

As
d

h·A (t,∆) 6≤
d

h·A (t,Γ), we see that∆ 6⊑rr mustΓ. SinceV ([t‖Γ]) = {−→ω } but−→ω 6∈ V ([t‖∆]), this
also is a counterexample against an extension of Lemma 6.2 with divergence.

Finally, by combining Theorems 3.6(ii) and 4.8(ii), together with Theorem 6.3, we obtain the main
result of the paper which states that, in the absence of divergence, nonnegative-reward must testing is as
discriminating as real-reward must testing.

Theorem 6.4 For any finitary convergent processes∆ and Γ, it holds that∆ ⊑rr must Γ if and only if
∆ ⊑nrmustΓ.

Proof: The “only if” direction is obvious (cf. Definition 3.5). For the “if” direction, suppose∆ andΓ
are finitary convergent processes. We reason as follows.

∆ ⊑Ω
nrmustΓ

iff ∆ ⊑Ω
pmustΓ Theorem 3.6(ii)

iff ∆ ⊑FS Γ Theorem 4.8(ii)
implies ∆ ⊑Ω

rr mustΓ . Theorem 6.32

7 Discussion

Below we give a characterisation of⊑rr must in terms of the set inclusion relation between testing outcome
sets. As a similar characterisation for⊑nrmust does in general not hold for finitary (non-convergent)
processes, hopefully this gives some indication of the subtle difference between⊑rr mustand⊑nrmust, and
we see more clearly why our proof of Theorem 6.4 involves the failure simulation preorder.

Theorem 7.1 Let ∆ andΓ be any finitary processes. Then∆ ⊑rr mustΓ if and only if A (Θ,∆)⊇A (Θ,Γ)
for anyΩ-testΘ.

Proof: (⇐) Let Θ be anyΩ-test andh ∈ [−1,1]Ω be any real-reward tuple. SupposeA (Θ,∆) ⊇
A (Θ,Γ). It is obvious thath·A (Θ,∆) ⊇ h·A (Θ,Γ), from which it easily follows that

l
h·A (Θ,∆) ≤

l
h·A (Θ,Γ).

Y. Deng, R.J. van Glabbeek, M. Hennessy & C.C. Morgan 23

As this holds for an arbitrary real-reward tupleh, we see that∆ ⊑rr mustΓ.
(⇒) Suppose for a contradiction that there is someΩ-testΘ with A (Θ,∆) 6⊇ A (Θ,Γ). Then there

exists some outcomeo∈ A (Θ,Γ) lying outsideA (Θ,∆), i.e.

o 6∈ A (Θ,∆). (17)

SinceΘ is finite, it contains only finitely many elements ofΩ, so that we may assume wlog thatΩ is
finite. Since∆ andΘ are finitary, it is easy to see that the pruned composition[∆‖Θ] is also finitary.
By Theorem 1/Corollary 1 in [3], the set{Φ | [∆‖Θ] =⇒ Φ} is convex and compact. With an analogous
proof, it can be shown that so is the set{Φ | [∆‖Θ] =⇒≻ Φ}. It follows that the set

{$Φ | [∆‖Θ] =⇒≻ Φ}

i.e. V ([Θ‖∆]), is also convex and compact. By Corollary 5.21 the setA (Θ,∆) is thus convex and
compact. Combining this with (17), and using the SeparationHyperplane Lemma [7, 12], we infer the
existence of some hyperplane whose normal ish∈ RΩ such thath ·o′ > h ·o for all o′ ∈ A (Θ,∆). By
scalingh, we obtain without loss of generality thath∈ [−1,1]Ω. It follows that

l
h·A (Θ,∆) > h·o ≥

l
h·A (Θ,Γ)

which is a contradiction to the assumption that∆ ⊑rr mustΓ. 2

Note that in the above proof the normal of the separating hyperplane belongs to[−1,1]Ω rather than
[0,1]Ω. So we cannot repeat the above proof for⊑nrmust. In general, we do not have that∆ ⊑nrmust Γ
impliesA (Θ,∆)⊇ A (Θ,Γ) for anyΩ-testΘ and for arbitrary finitary processes∆ andΓ, that is finitary
processes which might not be convergent. However, when we restrict ourselves to finitary convergent
processes, this property does indeed hold, as can be seen from the first four lines in the proof of Theo-
rem 6.3. Note that in that proof there is an essential use of the failure simulation preorder; in particular
the pleasing property stated in Lemma 6.2. Even for finitary convergent processes we cannot give a direct
and simple proof of that property for⊑nrmust, analogous to that of Theorem 7.1.

8 Conclusion

We have studied a notion of real-reward testing which extends the traditional nonnegative-reward testing
with negative rewards. It turned out that the real-reward may preorder is the inverse of the real-reward
must preorder, and vice versa. More interestingly, for finitary convergent processes, the real-reward must
testing preorder coincides with the nonnegative-reward testing preorder. In order to prove this result,
we have capitalised on a characterisation of nonnegative-reward testing in terms of a derivation based
simulation preorder. Relating derivations to resolutions, on which the testing theories are based, involved
proving some analytic properties such as the continuity of afunction for calculating testing outcomes.

Although for finitary convergent processes real-reward must testing is no more powerful than non-
negative-reward must testing, the same does not hold for maytesting. This is immediate from our result
that (the inverse of) real-reward may testing is as powerfulas real-reward must testing, that is known
not to hold for nonnegative-reward may- and must testing. For finitary processes we know from [3]
that⊑nrmay and⊑nrmust correspond to the simulation and failure simulation preorder respectively, and
without divergence the latter is strictly more discriminating than the former.

24 Real-Reward Testing for Probabilistic Processes

References

[1] R. De Nicola & M. Hennessy (1984):Testing equivalences for processes. Theoretical Computer Science34,
pp. 83–133, doi:10.1016/0304-3975(84)90113-0.

[2] Y. Deng, R.J. van Glabbeek, M. Hennessy & C.C. Morgan (2008): Characterising testing preorders for finite
probabilistic processes. Logical Methods in Computer Science4(4):4, doi:10.2168/LMCS-4(4:4)2008.

[3] Y. Deng, R.J. van Glabbeek, M. Hennessy & C.C. Morgan (2009): Testing finitary probabilistic processes.
In: Proc.CONCUR’09, LNCS 5710, Springer, pp. 274–288, doi:10.1007/978-3-642-04081-819.

[4] Y. Deng, R.J. van Glabbeek, M. Hennessy & C.C. Morgan (2009): Testing finitary probabilistic processes.
Full version of [3]. Available athttp://www.cse.unsw.edu.au/ ˜ rvg/pub/finitary.pdf .

[5] Y. Deng, R.J. van Glabbeek, M. Hennessy & C.C. Morgan (2011): Real Reward Testing for Probabilistic
Processes. In: Proc.QAPL’11. EPTCS57, pp. 61–73, doi:10.4204/EPTCS.57.5.

[6] Y. Deng, R.J. van Glabbeek, M. Hennessy, C.C. Morgan & C. Zhang (2007):Remarks on Testing Probabilis-
tic Processes. ENTCS172, pp. 359–397, doi:10.1016/j.entcs.2007.02.013.

[7] Y. Deng, R.J. van Glabbeek, C.C. Morgan & C. Zhang (2007):Scalar Outcomes Suffice for Finitary Proba-
bilistic Testing. In: Proc.ESOP’07, LNCS 4421, Springer, pp. 363–368, doi:10.1007/978-3-540-71316-625.

[8] R.J. van Glabbeek (1993):The Linear Time – Branching Time Spectrum II; The semantics of sequential
systems with silent moves (extended abstract). In: Proc.CONCUR’93. LNCS 751, Springer, pp. 66–81,
doi:10.1007/3-540-57208-26.

[9] M. Hennessy (1988):An Algebraic Theory of Processes. MIT Press.

[10] B. Jonsson, C. Ho-Stuart & Wang Yi (1994):Testing and Refinement for Nondeterministic and Probabilistic
Processes. In: Proc.FTRTFT’94, LNCS 863, Springer, pp. 418–430, doi:10.1007/3-540-58468-4 176.

[11] D. Kozen (1985):A Probabilistic PDL. JCSS30(2), pp. 162–178, doi:10.1016/0022-0000(85)90012-1.

[12] J. Matousek (2002):Lectures on Discrete Geometry. Springer.

[13] R. Milner (1989):Communication and Concurrency. Prentice-Hall.

[14] M.L. Puterman (1994):Markov Decision Processes. Wiley, doi:10.1002/9780470316887.

[15] J.J.M.M. Rutten, M.Kwiatkowska, G. Norman & D. Parker (2004):Mathematical Techniques for Analyzing
Concurrent and Probabilistic Systems,P. Panangaden and F. van Breugel (eds.).CRM Monograph Series23,
American Mathematical Society.

[16] R. Segala (1995):Modeling and Verification of Randomized Distributed Real-Time Systems. Ph.D. thesis,
MIT.

[17] R. Segala (1996):Testing Probabilistic Automata. In: ProceedingsCONCUR’96, LNCS 1119, Springer, pp.
299–314, doi:10.1007/3-540-61604-762.

[18] Wang Yi & K.G. Larsen (1992):Testing Probabilistic and Nondeterministic Processes. In: Proc.PSTV’92.
IFIP TransactionsC-8, North-Holland, pp. 47–61.

[19] Glynn Winskel (1993):The Formal Semantics of Programming Languages: An Introduction. The MIT Press.

http://dx.doi.org/10.1016/0304-3975(84)90113-0
http://dx.doi.org/10.2168/LMCS-4(4:4)2008
http://dx.doi.org/10.1007/978-3-642-04081-8_19
http://www.cse.unsw.edu.au/~rvg/pub/finitary.pdf
http://dx.doi.org/10.4204/EPTCS.57.5
http://dx.doi.org/10.1016/j.entcs.2007.02.013
http://dx.doi.org/10.1007/978-3-540-71316-6_25
http://dx.doi.org/10.1007/3-540-57208-2_6
http://dx.doi.org/10.1007/3-540-58468-4_176
http://dx.doi.org/10.1016/0022-0000(85)90012-1
http://dx.doi.org/10.1002/9780470316887
http://dx.doi.org/10.1007/3-540-61604-7_62

	Introduction
	Probabilistic Processes
	Testing probabilistic processes
	Failure simulations
	From derivations to resolutions
	Agreement of nonnegative- and real-reward must testing
	Discussion
	Conclusion

