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Abstract. Software verification is essential for safety-critical systems.
In this paper, we illustrate that some verification tasks can be done fully
automatically. We show how to automatically verify imperative programs
for relation-based discrete structures by combining relation algebra and
the well-known assertion-based verification method with automated the-
orem proving. We present two examples in detail: a relational program
for determining the reflexive-transitive closure and a topological sorting
algorithm. We also treat the automatic verification of the equivalence of
common-logical and relation-algebraic specifications.

1 Introduction

Many discrete structures of mathematics and computer science, such as orders,
lattices, certain classes of graphs, Petri nets, and games, are relations or can
easily be modelled by means of relations. In such cases computational tasks
frequently reduce computations on relations and the correctness proofs of the
corresponding algorithms to proofs of statements over relations.

In the past, various techniques for programming with relations have been
proposed. In this paper, we follow an approach that considers relations only
as data structures and manipulates them with a simple, imperative program-
ming language. It is straightforward to translate the relational programs into
more efficient programming languages such as Java or C. The approach also
bears methodical advantages: if problem specifications are expressed via relation-
algebraic formulae, then the correctness proofs allow to intertwine approved pro-
gram verification steps with formal and precise relation-algebraic calculations.
This mathematical rigour drastically reduces errors in the programs. Moreover,
this approach is supported by tools for (a) prototyping and testing, (b) inter-
active theorem proving, and (c) automatic theorem proving. An example for
prototyping and testing relation-algebraic specifications is RelView (cf. [30]),
which allows the evaluation of relation-algebraic expressions and the formulation
of relational programs. With regard to interactive theorem proving either special
purpose systems, such as RALF (see [14]), can be used, or relation-algebraic tech-
niques can be integrated into existing provers (for example into Isabelle/HOL as
described in [28,12]). Full automatisation of proofs can frequently be achieved
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by off-the-shelf automated theorem provers, such as Prover9 (see [31]). We refer
to [16] for such an application. In the present paper, we will follow the latter
approach and use Prover9 for automated program verification of while-programs.

Formal verification of imperative programs is often done by use of pre- and
post-conditions as problem specifications, and loop-invariants; see e.g., [10,11,13].
This so-called assertion-based technique is particularly useful for while-loops,
where it is sufficient to show that the loop-invariant is established and maintained
(under the assumption that the pre-condition holds) and that the post-condition
is valid as soon as the while-loop terminates. The combination of program ver-
ification and relation algebra we are going to use is not new; it was applied in
several case studies, for instance in [1,2,3,4].

Encouraged by the practicability and elegance of the latter results and the
positive experiences of [16], the combination of assertion-based program verifica-
tion and relation algebra was combined with automated theorem proving using
Prover9; see [5]. This paper is a continuation as well as a step further of this idea.
We consider two new and more sophisticated examples, viz. the computation of
reflexive-transitive closures by means of decomposition and the computation of
topological sortings in case of cycle-free relations. We further demonstrate how
the equivalences of the logical specifications and their relation-algebraic coun-
terparts can automatically be verified using Prover9. The paper closes with a
short discussion on the lessons we have learned from the two case studies.

2 Preliminaries

In this paper, we formalise data structures and assertions of imperative pro-
grams by homogeneous relation algebra, as axiomatised by Tarski in [26]. The
pre-conditions, post-conditions, loop-invariants and proof obligations will be for-
malised via expressions and formulae in relation algebra and implemented in
Prover9. In this section, we recapitulate the basic concepts of the relational cal-
culus and its automation via automated theorem proving, which are needed later
on. For more details we refer to [22,23] concerning relation algebra, to [31] con-
cerning Prover9, and to [7,24] concerning the use of automated theorem proving
in general software engineering.

2.1 (Homogeneous) Relation Algebra

Homogeneous relation algebra was first axiomatised in [26] and further developed
in [8,27]. A relation R over a set X , the universe, is a subset of the direct
product X ×X . Relation algebra offers five operations on relations, viz. R ∪
S (union), R ∩ S (intersection), R (complement), R;S (composition) and RT

(transposition), two predicates to compare relations, viz. R ⊆ S (inclusion) and
R=S (equality), and three special relations: O (empty relation), L (universal
relation), and I (identity relation). Except composition, transposition and the
identity relation all concepts are defined by standard set theory. The composition
R;S of two relations R and S is the set of all pairs (x, y) ∈ X ×X such that
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(x, z) ∈ R and (z, y)∈S for some z ∈X , the transposition RT is the set of all
pairs (x, y) ∈ X ×X with (y, x) ∈ R, and the identity relation I is the set of all
pairs (x, y) ∈ X ×X with x = y.

These definitions form the base of concrete relation algebras. An (abstract)
relation algebra abstracts from set theory and is axiomatised as follows, where
we follow the axiomatisation of [22] instead of [8,26,27].

1. With regard to , ∪, ∩, the order ⊆, and the constants O and L the relations
form a Boolean algebra.

2. With regard to composition and the identity relation I the relations form a
monoid.

3. The Dedekind rule holds, i.e., for all relations Q, R and S we have

Q;R ∩ S ⊆ (Q ∩ S ;RT);(R ∩QT ;S) . (1)

Since all axioms are first-order, it is easy to encode them in any off-the-shelf
automated theorem provers.

From the Dedekind rule we obtain the so-called Schröder equivalences (also
known as “Theorem K” of de Morgan). They state that

Q;R ⊆ S ⇔ QT ; S ⊆ R Q;R ⊆ S ⇔ S ;RT ⊆ Q (2)

for all relations Q, R, and S. The Schröder equivalences are equivalent to the
Dedekind rule (see e.g., [22]).

Using relation algebra, we now recapitulate some fundamental classes of re-
lations. These will be used in the remainder of the paper.

A relation R is called reflexive if I ⊆ R and transitive if R;R ⊆ R. The least
reflexive and transitive relation containing R is its reflexive-transitive closure
R∗, specified by the laws I ∪ R;R∗ = R∗ and R;Q ∪ S ⊆ Q ⇒ R∗ ;S ⊆ Q or,
equivalently, by the laws I ∪ R∗ ;R = R∗ and Q;R ∪ S ⊆ Q ⇒ S ;R∗ ⊆ Q to
hold for all relations Q, R, and S. A relation R is antisymmetric if R ∩ RT ⊆ I
and in combination with the above formulae this allows to characterise partial
order relations R by I ⊆ R, R;R ⊆ R, and R ∩RT ⊆ I. A partial order relation
R is called a linear order relation if additionally R ∪ RT = L holds. A relation
v satisfying v = v ;L is called a vector . In case of a set-theoretic (i.e., concrete)
relation v ⊆ X ×X this equation means that an element x ∈ X is either in
relationship to none of the elements of X or to all elements of X . Due to this
property, vectors can be used to model subsets of the universe X . We say that
v ⊆ X × X models the subset Y of X if for all x, y ∈ X we have that x ∈ Y
iff (x, y) ∈ v. By definition, a point is an injective and surjective vector, i.e., a
vector p such that the two properties L;p = L and p;pT ⊆ I hold. In case of a
set-theoretic point p ⊆ X × X these properties mean that it models a singleton
subset {x} of X , i.e., the element x of the universe if we identify the singleton
set {x} with the only element x it contains.

2.2 Automating Relation Algebra

Automated/mechanised reasoning is not a new challenge, but has been per-
formed since more than 20 years. Interactive theorem provers for relation al-
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gebras have been implemented (see e.g., [28,17]) and relational techniques have
been integrated into various proof checkers for B or Z. Special purpose first-order
proof systems for relation algebras, including tableaux and Rasiowa-Sikorski cal-
culi, have been proposed as well (e.g., in [20]). Translations of relation-algebraic
formulae into (undecidable) fragments of predicate logics have been implemented
(see [25]) and integrated into the theorem prover SPASS (see [29]). However, it
has been shown that automated reasoning with relation algebra does not need
special-purpose tools nor interaction. As demonstrated in [16,5], an off-the-shelf
automated theorem prover, such as Prover9, is often sufficient.

In this paper, we follow the latter approach and encode relation algebra in
Prover9, which is a saturation-based automated theorem prover for first-order
logic with equality. An evaluation of various automated theorem provers has
shown that in our context Prover9 is currently best suited for verifying proper-
ties in relation algebra; see [9]. We also have experimented with the interactive
theorem prover Isabelle/HOL. However, for our specific purpose the proof-effort
of interactive theorem provers presently seems to be too high. Moreover, we be-
lieve that they often require a rather deep understanding of the used tool and
hence experienced user, whereas our approach also can be used by people mainly
interested in relation algebra and not in theorem proving.

Prover9 implements a first-order resolution and paramodulation calculus.
Equalities are handled via rewriting rules and Knuth-Bendix completion. The
tool suite also offers the counterexample generator Mace4, which is very useful
in practice. The encoding of relation-algebraic formulae in Prover9 is straight-
forward. For example the Dedekind rule (1) can be written as follows:

all Q all R all S (Q * R /\ S <= (Q /\ R * S^) * (R /\ Q^ * S)).

Since Prover9 allows only ASCII symbols as input, we use the symbols \/, /\, *,
^, ’, <= and rtc( ) for union, intersection, composition, transposition, com-

plement, inclusion, and the operator for reflexive-transitiv closure, respectively.
An entire input template can be found in the appendix.

Prover9 does not support types. Hence we define the following two predicates
to characterise relations as vectors and points; they are nothing else than the
translations of the definitions of Section 2.1 into the language of Prover9:

vector(R) <-> R = R*L.

point(R) <-> (R = R*L & L*R = L & R*R^ <= I).

Prover9, as any other automated theorem proving system, heavily depends on
the axioms given as input. In case one only uses the few axioms of relation
algebra given in Section 2.1, an automated theorem prover has to derive each
and every relation-algebraic fact used in a proof. For example, if a distributivity
law is needed for a proof, Prover9 has to derive it first. This fact does not only
increase the running times of the theorem prover, but sometimes even yields
failure in the proof search. Due to this, suitable and well-known facts, such as
the following distributivity laws, should be added as axioms.

all R all S all T ((R \/ S)*T = R*T \/ S*T).

all R all S all T (T*(R \/ S) = T*R \/ T*S).
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Other examples for useful relation-algebraic facts concern transposition, such as
the following formulae:

all R (R^^ = R).

all R all S ((R * S)^ = S^ * R^).

For the proof automatisation we use a suitable (fixed) set of axioms. In case we
need some special fact as additional input, we will state it. All input files can be
found at the webpage http://hoefner-online.de/ramics14/. Running times
presented in this paper are w.r.t. a standard desktop PC equipped with a 3.1 GHz
Intel Pentium 5 CPU, 16 GB main memory, running a Mac OS operating system.

3 Automation of Proof Obligations

We start with a description of our general approach to the automation of the
assertion-based verification of relational programs. Then we consider two exam-
ples. All formulae appearing in the verifications are relation-algebraic ones, but
usually the notions in question are specified by predicate-logical means. To con-
nect these two kinds of specifications, we finally show how to automatically verify
the equivalence of the relation-algebraic and the common-logical specifications.

3.1 Verification of Relational While-Programs

In the present paper, we treat imperative programs with relations as data type.
Concretely this means that the constants, operations and predicates of relation
algebra, as introduced in Section 2.1, are available. Furthermore, we consider
while-programs of the following specific form only:

x := I(α);

while B(α,x) do

x := E(α,x) od

(W)

This specific form is only chosen for simplifying program verification. There are
no problems on the conceptional side to handle more complicated programs,
like those of [3]. Whether the presented approach scales to larger programs, i.e.,
whether automated theorem provers are able to automatically verify larger re-
lational programs, is part of future work. However, at this place it should be
mentioned that relational programs are often small. This is due to the fact that
relation-algebraic expressions frequently allow concise descriptions of computa-
tions which in conventional programming languages usually are expressed by, for
example, (nested) loops.

In the while-program (W) x denotes a non-empty list x1, . . . , xn of vari-
ables for relations. Furthermore, α denotes a list of input relations and by I(α)
and I1(α), . . . , In(α) a list of relation-algebraic expressions over the input rela-
tions. So, the collateral assignment x := I(α) describes the initialisation of the

http://hoefner-online.de/ramics14/
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variables. E(α,x) denotes a list E1(α,x), . . . , En(α,x) of relation-algebraic ex-
pressions, but now over the input relations and the variables. Finally, B(α,x)
denotes a quantifier-free formula built over the vocabulary of relation algebra, the
input relations, and the variables, usually an inclusion or an equation. It is called
the loop-condition. As long as it evaluates to true, the loop-body x :=E(α,x),
again a collateral assignment, is executed.

A problem specification consists of a pre-condition Pre(α) and a post-condi-
tion Post(α,x). The pre-condition describes the input restrictions and the post-
condition describes the result(s) which should be computed. In our case both
conditions are formulated within the language of relation algebra, frequently as
conjunctions of relation-algebraic inclusions and equations. A given algorithm (a
while-program) is partially correct if it satisfies the post-condition after termi-
nation, in case that the pre-condition holds. It is totally correct if it is partially
correct and also guarantees termination, provided the pre-condition holds.

To prove that a program of the presented form (W) is totally correct w.r.t.
a given problem specification, we use the inductive assertion method (see e.g.,
[10,11,13]). This method consists of three major steps: (a) the identification of
a loop-invariant Inv(α,x), (b) the verification of three proof obligations, viz.
that the loop-invariant is established by the initialisation, maintained by the
loop-body, and that the loop-invariant together with the negated loop-condition
implies the post-condition, and (c) the termination of the program.

Since we are looking at relational while-programs, the loop-invariant Inv(α,x)
is also formulated within the language of relation algebra. The three proof
obligations of (b) then may be formalised by three implications over Pre(α),
Post(α,x), Inv(α) and B(α,x). The first one,

Pre(α)⇒ Inv(α, I(α)) (PO1)

says that, if the pre-condition holds, then the loop-invariant has to be established
by the initialisation of the variables. After it has been shown that the loop-
invariant is established, it needs to be maintained during all runs through the
loop. This is formally expressed by the implication

Inv(α,x) ∧B(α,x)⇒ Inv(α,E(α,x)) . (PO2)

The implication that formalises the third proof obligation is

Inv(α,x) ∧ ¬B(α,x)⇒ Post(α,x) . (PO3)

It expresses that if the while-loop terminates, i.e., B(α,x) does not hold any
longer, then the loop-invariant has to imply the post-condition. Since we are
interested in total correctness, we also want to prove (correct) termination, i.e.

Pre(α)⇒ the program yields a defined vaule. (T)

Usually, (correct) termination of (W) means that its while-loop terminates after
a finite number of iterations. However, our instantiations of (W) use a specific
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partial operation point on relations, as we will see in later sections. Therefore, a
proof of (T) requires, besides the termination of the while-loop, the verification
that each application of point yields a defined value.

Unfortunately, it is well known that termination is undecidable. However, in
specific cases the termination of while-loops can be proven by measure functions.
A measure function δ maps program states into a Noetherian pre-order such that,
with the above notations, Pre(α) and B(α,x) imply δ(E(α,x)) < δ(x). By
this, every execution of the loop-body strictly decreases the measure and, hence,
termination of the while-loop is guaranteed. In this paper, we will not only show
how proofs of partial correctness can be automatised, we will also show that,
under some circumstances, total correctness proofs can be supported.

3.2 Reflexive-transitive Closure

The first algorithm we verify with the help of Prover9 is an algorithm for com-
puting the reflexive-transitive closure R∗ for a given relation R. It is obtained by
transforming the functional program of [6] into the following while-program (P1).
In the program (P1) a (partial) operation point is assumed to be at hand that
selects a point from a non-empty vector. The operation point is deterministic.
In RelView the deterministic selection of a point via the pre-defined operation
point is done using the internal enumeration of the universe X .

C, v := I,O;
while v 6= R;L do

let p = point(R;L ∩ v );
C, v := C ∪ C ;p;pT ;R;C, v ∪ p od

(P1)

The program (P1) uses two variables: C for computing the result and v, a vector,
for looping through all points of the range R;L of R. To enhance readability, it
uses a let-clause.1. The selected point point(R;L ∩ v ) is denominated with the
letter p for its threefold use in the subsequent assignment. If, in case of set-
theoretic relations, v models the subset V of the universe X , then the chosen
point p models an element x of the set X \V that possesses at least one successor
w.r.t. R, and the subrelation p;pT ;R of R consists precisely of those pairs (y, z)
of R, for which y = x holds. Although the program (P1) is deterministic, in
principle it does not matter which element x is chosen, as long as it was not
handled before and has at least one successor. For the verification we only need
the following properties (3) specifying p as a point contained in the vector R;L∩
v .

p;L = p L;p = L p;pT ⊆ I p ⊆ R;L ∩ v . (3)

There is no requirement on the input relation R. So, the pre-condition Pre(R)
equals true. The post-condition Post(R,C) depends on the input R and the

1 We consider the let-clause as syntactical suger only, since the replacement of each
occurrence of p in the body of the while-loop of (P1) by point(R;L ∩ v ) and the
removal of the let-clause transforms (P1) into the schematic form (W).
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Table 1. Auxiliary Facts for Verification

Formula Running Time

p;L = p ∧ L;p = L ∧ p;pT ⊆ I ⇒ R ∩ p = p;pT ;R 73 s

p;L = p ∧ L;p = L ∧ p;pT ⊆ I ⇒ (R ∩ p);L;(R ∩ p) ⊆ R ∩ p;L 248 s
S ;L;S ⊆ S ⇒ (R ∪ S)∗ = R∗ ∪R∗ ;S ;R∗ 184 s

(output) variable C and is C = R∗, since we want to compute the reflexive-
transitive closure of R. Transferring an idea of [6] to the imperative paradigm, we
obtain the conjunction of the two equations of (4) as loop-invariant Inv(R,C, v).

C = (R ∩ v)∗ v = v ;L (4)

The first equation is best described in the Boolean matrix model of relations. It
says that C equals the reflexive-transitive closure of the relation (matrix), that
is obtained from R by replacing those rows by zero-rows (all entries are zero)
where v consists of zeros only.

As discussed in the previous section, it suffices to verify the proof obligations
(PO1) to (PO3) to show the partial correctness of the program (P1). Prover9
shows the corresponding instantiation of (PO1) in no time (0 s). Proving the
corresponding instantiation of (PO3) is as simple and does not cost time either.
In contrast to these cases proving the corresponding instantiation of (PO2), i.e.,
the maintenance of the loop-invariant, is more complicated. Here, the main goal
is to show that under the assumptions of (3) and v 6= R;L it holds

C = (R ∩ v)∗ ⇒ C ∪ C ;p;pT ;R;C = (R ∩ (v ∪ p))∗ . (5)

Unfortunately, Prover9 is not able to prove the implication (5) from scratch
within 1000 s. It does not have sufficient knowledge about the Kleene star. The
theorem prover needs additional properties of this operation as input. Adding
auxiliary laws, such as star-monotonicity does not help. One needs further spe-
cific knowledge about the Kleene star in relation algebra. In [6] the laws listed in
Table 1 are used to prove the correctness of the functional program. If these three
laws are added, then Prover9 proves (5) and the entire instantiation of (PO2)
within 1 s. Luckily, the additional laws can all be proven fully automatically. The
running times are presented in Table 1.

The proof of (5) is by far not trivial (even with the additional properties),
but definitely shows some limitation of our approach. It cannot be expected
that all proofs can be automated. In fact, it is well known that theorem proving
in the area of relation algebra is undecidable. However, Prover9 (or any other
automated theorem prover) can assist to get rid of proofs of low or medium
complexity. The user can then concentrate on the more complicated proofs, such
as the maintenance of the loop-invariant of the algorithm under consideration.
As we will show in the next section, sometimes even all proofs can be automated.
A longer discussion about lessons learned is given in Section 4.

So far we have established partial correctness only. However, we can even
show total correctness with the help of Prover9. To prove total correctness, we
have to show that the while-loop of the program (P1) terminates and each of its
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point-calls is defined. We use the values of the variable v as measure function
and use Prover9 to verify the inclusion

v ⊆ R;L (6)

as well as the universally quantified implication

∀p : p;L = p ∧ L;p = L ∧ p;pT ⊆ I ∧ p ⊆ R;L ∩ v ⇒ v ⊂ v ∪ p . (7)

With the help of the inclusion (6) and contraposition it is easy to prove that
R;L ∩ v 6= O if v 6= R;L: From R;L ∩ v = O we get R;L ⊆ v ⊆ R;L and this
yields v = R;L. As a consequence, each call point(R;L∩ v ) in the program (P1)
is defined. The formula (7) states that under the assumptions of (3) the vector
v grows strictly. If the universe X is finite, then (6) and (7) together imply that
the while-loop terminates, since v is strictly enlarged by every execution of its
body but it cannot exceed R;L. The two properties (6) and (7) constitute again
a loop-invariant and, using Prover9, it can successfully be treated in the same
fashion as the previous loop-invariant (4). We summarise the results in Table 2.

3.3 Topological Sorting of Cycle-free Relations

A topological sorting of a cycle-free relation R is a linear order relation that con-
tains R. The relational program we consider in this section stems from [4] and is
the relational version of Kahn’s well-known algorithm for computing topological
sortings (see [18]). It uses two variables, S for computing the result and v as
auxiliary vector variable for the while-loop, and looks as follows:

S, v := I,O;
while v 6= L do

let p = point( v ∩ (RT ∩ I ); v );
S, v := S ∪ v ;pT, v ∪ p od

(P2)

Similar to program (P1), program (P2) also uses a let-clause to improve read-
ability. It introduces p as a name for the point chosen from the vector v ∩
(RT ∩ I ); v via the operation point. If R and v are set-theoretic relations and the

Table 2. Running Times for Termination Proofs

Formula Running Time

O ⊆ R;L 0 s
(3) ∧ v ⊆ R;L ⇒ v ∪ p ⊆ R;L 1 s

(3) ∧ v 6= R;L ⇒ v ⊆ v ∪ p 2 0 s
(3) ∧ v 6= R;L ⇒ v 6= v ∪ p 0 s

2 In this example Prover9 finds a proof, but outputs “SEARCH FAILED” followed by
“Exiting with 1 proof”. A close inspection of the proof logs shows that such situations
occur if negative clauses are included in the goals. Then the output is misleading,
since in such cases Prover9 did find a proof, but thought it had to keep searching.
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Table 3. Invariants for Topological Sorting

Name Invariant Name Invariant

Inv0(v) v ;L ⊆ v Inv4(S) I ⊆ S

Inv1(S, v) S ;v ⊆ v Inv5(S) S ∩ ST ⊆ S

Inv2(S, v) S ∪ ST = v ;vT ∪ I Inv6(S) S ;S ⊆ S

Inv3(R,S, v) R ∩ v ;vT ⊆ S Inv7(R, v) R;v ⊆ v

vector v models the subset V of the universe X , then the vector v ∩ (RT ∩ I ); v
models the set of minimal elements of the set X \ V . So, via the variable v the
program (P2) constructs a chain

∅ ⊂ {x1} ⊂ {x1, x2} ⊂ {x1, x2, x3} ⊂ . . . ⊂ {x1, x2, . . . , xn} = X (8)

of subsets of X , where for all i ∈ {0, . . . , n−1} the set {x1, . . . , xi+1} is obtained
from the set {x1, . . . , xi} by adding a minimal element of X \ {x1, . . . , xi}. As
before this chain can be used to prove termination later on, if X is finite. Simul-
taneously to the chain (8) the program (P2) creates another chain

I = S0 ⊂ S1 ⊂ . . . ⊂ Sn (9)

of relations, using the variable S. For all i ∈ {0, . . . , n}, the relation Si is a
topological sorting of the input R if both are restricted to {x1, . . . , xi}. Because
of the initialisation of S, outside of this set Si consists of loops (x, x) only.

Before we treat the automated verification of the above program, we have to

be more precise about the choice of p. If p is a point satisfying p ⊆ (RT ∩ I ); v ,
then R;p ⊆ v ∪ p follows by the use of the Schröder equivalences (2) (see [4]).
As a consequence, we assume the following properties for p:

p;L = p L;p = L p;pT ⊆ I p ⊆ v R;p ⊆ v ∪ p (10)

A topological sorting requires a cycle-free relation as input. Since cycle-
freeness of R relation-algebraically can be specified as R;R∗ ⊆ I , we take
this formula as pre-condition Pre(R). In case of a finite universe X we then
get that the relation RT ∩ I is progressively finite in the sense of [22]. Hence,
v ⊆ (RT ∩ I ); v implies v = O. By contraposition we obtain that v 6= O
implies v 6⊆ (RT ∩ I ); v and this is equivalent to the fact that v 6= L implies

v ∩ (RT ∩ I ); v 6= O. So, in the finite case or, more generally, the Noetherian
case (since Noetherian relations are precisely those the transposes of which are
progressively finite), there exists a p that satisfies the properties of (10), i.e., all
calls of point in the program (P2) are defined.

The conjunction of the formulae R ⊆ S, I ⊆ S, S ;S ⊆ S, S ∩ST ⊆ I, and S ∪
ST = L forms the post-condition Post(R,S) and the loop-invariant Inv(R,S, v)
consists of a conjunction of eight formulae, which are shown in Table 3.

The formula Inv0(v) specifies v as a vector and Inv2(S, v) to Inv6(S) con-
stitute the relation-algebraic formalisation of the above described relationship
between the sets of the chain (8) and the relations of the chain (9). The remain-
ing two formulae Inv1(S, v) and Inv7(R, v) specify that the set, modelled by v,
is predecessor-closed w.r.t. S and R, respectively.
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As before, we use Prover9 to verify all proof obligations. This time there are
no problems at all, and all verification tasks could be fully automated without
interactions. The establishment of the loop-invariant as well as the verification
of the post condition (proof obligations (PO1) and (PO3)) takes no time; the
running times of the maintenance of the invariance are shown in Table 4. This
finishes the proof of partial correctness.

We can again use Prover9 to verify total correctness. In fact the proofs are
nearly identical to the ones for the program (P1).

3.4 Equivalence of Logical and Relation-algebraic Specifications

In the previous two sections we have automatically proven the total correctness of
two relational while-programs. One reason why we could use automated theorem
provers is that we are able to write program specifications and loop-invariants
as relation-algebraic formulae. However, often specifications and program prop-
erties are not given in a relation-algebraic manner, but in predicate logic. For
example, the post-condition of the program (P2), which characterises a topo-
logical sorting S of R, in first-order logic is the conjunction of the following
formulae:

∀x, y : (x, y) ∈ R⇒ (x, y) ∈ S
∀x : (x, x) ∈ S
∀x, y, z : (x, y) ∈ S ∧ (y, z) ∈ S ⇒ (x, z) ∈ S
∀x, y : (x, y) ∈ S ∧ (y, x) ∈ S ⇒ x = y
∀x, y : (x, y) ∈ S ∨ (y, x) ∈ S .

(11)

These formulae are standard predicate logic in combination with set theory. For
example, the latter three characterise S as transitive, antisymmetric, and total
(sometimes also called complete); hence as a linear order. The formulae of (11)
are, in the same order, equivalent to R ⊆ S, I ⊆ S, S ;S ⊆ S, S ∩ ST ⊆ I, and
S ∪ ST = L, respectively.

In this section we show that Prover9 can also be used to verify such equiva-
lences. By this we close the gap between specifications written in predicate logic
and specifications written in relation algebra, as we used them earlier. To do
so, we have to define some fragments of set theory in Prover9. We define a new
predicate in(x, y,R), where R is a relation and x, y range over the universe of R.
Semantically, we want to have that in(x,y,R) iff (x, y) ∈ R. Hence in(x, y,R)
models the membership property. The predicate in needs additional axioms for

Table 4. Running Times for Proof Obligation (PO2)

Formula Running Time

v 6= L ∧ (10) ∧ Inv(R,S, v) ⇒ Inv0(v ∪ p) 0 s

v 6= L ∧ (10) ∧ Inv(R,S, v) ⇒ Inv1(S ∪ v ;pT, v ∪ p) 22 s

v 6= L ∧ (10) ∧ Inv(R,S, v) ⇒ Inv2(S ∪ v ;pT, v ∪ p) 3 s

v 6= L ∧ (10) ∧ Inv(R,S, v) ⇒ Inv3(R,S ∪ v ;pT, v ∪ p) 1 s

v 6= L ∧ (10) ∧ Inv(R,S, v) ⇒ Inv4(S ∪ v ;pT) 0 s

v 6= L ∧ (10) ∧ Inv(R,S, v) ⇒ Inv5(S ∪ v ;pT) 43 s

v 6= L ∧ (10) ∧ Inv(R,S, v) ⇒ Inv6(S ∪ v ;pT) 24 s
v 6= L ∧ (10) ∧ Inv(R,S, v) ⇒ Inv7(R, v ∪ p) 0 s
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the relation-algebraic operations ∪, ∩, , ;, T and the constants L, O, and I; all
being straight forward. For example, union and transposition are defined as

all R all S (in(x,y,(R \/ S)) <-> in(x,y,R) | in(x,y,S)).

all R (in(x,y,R^) <-> in(y,x,R)).

The universal relation L can be defined as in(x,y,L) and similar the other two
constants O and I can be defined. This combines the algebraic and the logical
point of view on relations. In the same manner we can specify inclusion and
equality on relations:

all R all S (R <= S <-> (all x all y (in(x,y,R) -> in(x,y,S)))).

all R all S (R == S <-> (all x all y (in(x,y,R) <-> in(x,y,S)))).

With an input file containing all facts about the predicate in – the full input
file can be found again in the appendix – we have verified that the five logical
formulae in (11) in fact are equivalent to their relation-algebraic counterparts.
Unfortunately, our experiments show that Prover9 does not always find a proof
or needs long running times. This is due to two reasons: (a) proving equivalences
is often hard, not only for theorem provers, but also for human beings, and (b)
Prover9 does not have further knowledge about the operators (as above). Hence,
Prover9 needs to derive all facts needed, but it might also derive useless facts,
such as “towers” of transpositions. By the latter we mean that Prover9 searches
the search space and derives formulae such as

(x, y) ∈ R ⇔ (x, y) ∈ RTT ⇔ (x, y) ∈ RTTTT

⇔ . . .

Splitting equivalences into two implications is an easy solution for problem (a).
Moreover, this strategy can easily be automated by a preparation step while
generating the input file for Prover9. Often this improves the running times of
Prover9 drastically. For problem (b) there are two different approaches. The first
one requires the addition of auxiliary lemmas, as we did in Section 3.2. However,
for the proofs presented in this section there is a more generic way. When aiming
at the proof for the formula

(∀x, y : (x, y) ∈ R⇒ (x, y) ∈ S) ⇔ R ⊆ S,

it is unlikely that Prover9 requires facts about the operations ∪, ∩, , or T.
Hence the corresponding axioms can be dropped. A quick check with Mace4 can
show whether one of the skipped equivalences is needed – this is not the case for
our experiments. Using the latter strategy, all but one of the above mentioned
five equivalences can be proven in nearly no time. Only one equivalence needs
to be split into implications. The results are summarised in Table 5.

4 Lessons Learned

In the present paper, we aimed at proof automation and proof assistance for the
assertion-based verification of simple relational while-programs. Overall the ex-
periments performed have been successful and our experience was often positive.
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Table 5. Running Times for the Verification of the Formulae of (11)

Formula Running Time

(∀x, y : (x, y) ∈ R⇒ (x, y) ∈ S) ⇔ R ⊆ S 0 s
(∀x : (x, x) ∈ S) ⇔ I ⊆ S 0 s

(∀x, y, z : (x, y) ∈ S ∧ (y, z) ∈ S ⇒ (x, z) ∈ S) ⇔ S ;S ⊆ S 0 s

(∀x, y : (x, y) ∈ S ∧ (y, x) ∈ S ⇒ x = y) ⇒ S ∩ ST ⊆ I 1 s

(∀x, y : (x, y) ∈ S ∧ (y, x) ∈ S ⇒ x = y) ⇐ S ∩ ST ⊆ I 0 s

(∀x, y : (x, y) ∈ S ∨ (y, x) ∈ S) ⇔ S ∪ ST = L 2.5 s

However, there are some lessons to be learned when following this approach. The
most important ones are discussed in this section.

All automated theorem proving systems depend on the axioms, given as
input. If there are too few, many auxiliary facts need to be derived on the fly;
if there are too many, the search space explodes and the system probably will
not terminate. When starting our experiments, we used a minimal set of axioms
only. We noticed that this set was far too small. So, we added a couple of further
well-known laws, such as monotonicity and (sub-)distributivity laws – all these
facts can be proven automatically by Prover9; see [16]. It turned out that we
found a good set of axioms. With this extended set, our second example could
be verified fully automatically and the first one only failed for one goal, which
could be proven after we added the three laws of Table 1.

Although Prover9 helps a lot, it cannot be expected that a proof for every
(true) fact can be found. It is well known that full automatisation is undecidable
for relation algebra. Moreover, many researcher often spent years to find single
proofs of difficult theorems – how could an automatic tool like Prover9 do it
within a couple of minutes? However, theorem provers can help in verifying
proofs of low or medium complexity. Those proofs often occur if induction on
the structure of certain objects is used. As a consequence, a researcher can leave
the easy theorems to the tool and can concentrate on “hard” tasks and the basic
strategies for their proofs.

When experimenting, often hypotheses appear which are supposed to be
true, but in fact are false. If, as in our case, counterexample generators (here
Mace4) work on the same input files, they can be used to falsify hypotheses. We
sometimes believed that a loop-invariant or another property is true, but in fact
a certain formula was missing – this saves time of the researcher.

If a property is defined by a list of formulae, such as in our examples to
be a point, then the definition of a corresponding predicate makes things much
more readable. The same holds for the definition of auxiliary operations via cer-
tain properties. During our investigations we noticed that Prover9 unfolds such
definitions rather late to keep the sets of formulae it has to treat small. Unfortu-
nately, this strategy may lead to very large running times and a proof even may
fail since certain rules cannot be applied. In such situations an unfolding of the
definitions by the user (or by a preprocessing tool) led to success.

Since Prover9 does not support types, during all our experiments we have
been responsible for the correct typing. We usually work within heterogeneous
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relation algebra in the sense of [22,23]. Therefore, typing was no problem and
the rare typing errors immediately have been discovered and corrected with the
help of Mace4 or RelView experiments.

5 Conclusion and Outlook

In this paper, we have shown that program verification can sometimes be achieved
by the use of automated theorem provers. In particular, we have followed an
approach that automatically verifies imperative programs for relation-based dis-
crete structures by combining relation algebra, the assertion-based technique
and the automated theorem prover Prover9. By this, we have been able to prove
the correctness of a relational program for determining the reflexive-transitive
closure and of a relational topological sorting program. We have also treated the
automatic verification of the equivalence of the common logical and the relation-
algebraic specifications of the properties used in our example (and elsewhere in
a similar context).

So far we have only considered relations as data structures. These data struc-
tures can be used for algorithms working on many discrete structures, for in-
stance those mentioned in the introduction. However, relation algebra is lim-
ited and cannot, for example, reason about words, regular expressions, paths in
graphs, and weighted graphs. Reasoning on these structures is often done by
calculations on (variants of) Kleene algebra. Since Kleene algebra is also suited
for automated theorem provers (see e.g., [15]), we plan to extend our class of
algorithms to Kleene-algebraic data structures.

Presently, we manually generate the loop-invariants. In doing so, the main
formulae (e.g. Inv2(S, v) to Inv6(S) in case of topological sorting) constitute for-
malisations of the ideas behind the algorithms and are frequently obtained via
suitable generalisations of the post-conditions. Based on them, the auxiliary for-
mulae (the remaining ones in case of topological sorting) are usually discovered
when trying to verify that the main formulae are maintained by the loop-bodies.
For the latter, the tools Mace4 (for generating counterexamples) and RelView
(for program evaluation, animation, and visualisation of relations) proved to be
very useful. Under this point of view, our approach consists in the computer-
supported application of the fundamental principle that “a program and its cor-
rectness proof should be developed hand-in-hand with the proof usually leading
the way” (cf. [13], p. 164).

If program verification is done using the level of informality common to usual
human-produced mathematical proofs, then the facts specified by the above
mentioned auxiliary formulae may be overlooked and this may lead to subtle
errors. We believe that our approach, as all computer-aided formal methods
of programming, leads to results with a much greater mathematical certainty.
Hence it increases the confidence.

Although the generation of loop-invariants is in general hard (or even infea-
sible), techniques for automatically testing and generating loop-invariants and
intermediate assertions have been developed since the middle of the 1970s. They
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are tailored to specific applications and assume a specific structure of the pro-
grams and the used assertions. The applied techniques frequently stem from
program analysis and computer algebra; see e.g., [21,19]. Apart from automati-
cally testing loop-invariants via Mace4 and RelView, presently we do not use
such ideas. However, the automated testing and generation of loop-invariants
and intermediate assertions in case of relational programs is part of future work.
We hope that algebraic expressions support such tasks, in particular in cases
where algebra leads to nice properties and clear structures.

As we have mentioned in Section 4, we usually work within heterogeneous
relation algebra where each relation has a distinct type. For reasons of efficiency,
in such a setting a vector usually has a type X↔1, with 1 as a specific single-
ton set, i.e., corresponds to a Boolean column vector. To get along with such
situations and to benefit from the advantages of types, w.r.t. the preventation
and detection of errors, the extension of our approach to heterogeneous relation
algebra is planned for the future, too.
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A Prover9 Templates

This appendix contains two templates to be used with Prover9. The first one
specifies relation algebra.

% LANGUAGE SPECIFICATION

op(500, infix, "\/" ). % union

op(490, infix, "/\" ). % intersection

op(700, infix, "<="). % inclusion

op(480, postfix, "*" ). % composition (not Kleene star)

op(300, postfix, "’"). % complementation

op(300, postfix, "^"). % transposition

% AXIOMS

formulas(sos).

% axioms of Boolean algebra %

%commutativity

x \/ y = y \/ x.

x /\ y = y /\ x.

%associativity

x \/ (y \/ z) = (x \/ y) \/ z.

x /\ (y /\ z) = (x /\ y) /\ z.

%absorpotion

x \/ (y /\ x) = x.

x /\ (y \/ x) = x.

% ordering

x <= y <-> x \/ y = y.

x <= y <-> x /\ y = x.

%distributivity

x /\ (y \/ z) = (x /\ y) \/ (x /\ z).

x \/ (y /\ z) = (x \/ y) /\ (x \/ z).

%constants

L = x \/ x’.

O = x /\ x’.

% composition %

x * (y * z) = (x * y) * z.

x * I = x.

I * x = x.

% Schroeder/Dedekind %

x* y /\ z <= (x /\ z* y^) * (y /\ x^* z).

x* y <= z <-> x^ * z’<= y’.

x* y <= z <-> z’ * y^ <= x’.

% standard axioms for finite iteration (Kleene star) %

%unfold laws

I \/ x * rtc(x) = rtc(x).

I \/ rtc(x) * x = rtc(x).

%induction

x * y \/ z <= y -> rtc(x) * z <= y.

y * x \/ z <= y -> z * rtc(x) <= y.

end_of_list.
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% CONJECTURE

formulas(goals).

%lemma to be proved

end_of_list.

Although Prover9 accepts capital letters as variable symbols, such as Q, R,
and S, this template uses the small letters x, y, and z for variables. The reason
for this renaming is that the latter variable names are automatically qualified
by Prover9, i.e., they can be used without using the keyword all.

The second template establishes the relation between local and relation-
algebraic specifications (see Section 3.4).

% LANGUAGE SPECIFICATION %--as above--%

% AXIOMS

formulas(sos).

% in()-predicate

%operations

all R all S (in(x,y,R \/ S) <-> (in(x,y,R) | in(x,y,S))).

all R all S (in(x,y,R /\ S) <-> (in(x,y,R) & in(x,y,S))).

all R all S (in(x,y,R * S) <-> exists z (in(x,z,R) & in(z,y,S))).

all R (in(x,y,R’) <-> -(in(x,y,R))).

all R (in(x,y,R^) <-> in(y,x,R)).

%constants

in(x,y,I) <-> x=y.

-(in(x,y,O)).

in(x,y,L).

%inclusion and equality

all R all S (R == S <-> (R <= S & S <= R)).

all R all S (R <= S <-> (all x all y (in(x,y,R) -> in(x,y,S)))).

end_of_list.

% CONJECTURE %--as above--%
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