Proof Engineering Challenges for Large-Scale
Verification

Gerwin Klein

NICTA* and UNSW, Sydney, Australia

{first-name.last-name}@nicta.com.au

In this extended abstract I summarise challenges for proof engineering that
we encountered in the formal verification of the sel.4 microkernel [7], and its
subsequent proofs of integrity [12], non-interference [10], and binary correct-
ness [11]. I focus on problems where there is scope for automation using AI and
machine-learning techniques. For more background on the selL4 verification, and
an analysis of the effort spent on it, see previous work [6].

The sel4 kernel is a 3rd generation microkernel in the L4 family [9]. Such
kernels provide basic operating system (OS) mechanisms such as virtual memory,
synchronous and asynchronous messages, interrupt handling, and in the case of
selL4, capability-based access control. The idea is that, using these mechanisms,
one can isolate software components in time and space from each other, enabling
separate compositional verification of trusted components as well as proof that
no such correctness is required of untrusted components, because the kernel and
its policy configuration already sufficiently constrain their behaviour [2].

The verification of selL.4 was not a large project by industrial software devel-
opment standards, but it was sizeable for an academic formal verification project.
The functional correctness proof of sel.4 took roughly 12 person years, the overall
initial project, including tool building, libraries, and research in scalable proof
techniques, usable semantics of the C programming language, etc. took about 25
person years; for a more precise analysis see [6]. This effort later paid off in the
proof of high-level security properties: they were much easier to show, because
they could now be established on an abstract specification instead of directly on
the code. Integrity cost less than 8 person months, non-interference less than
21 person months, and updates to the kernel to add a separation scheduler cost
another 21 person months, including updates to all existing proofs. Automatic
binary verification for functional correctness then extended these properties down
to the low-level semantics of ARMv6 machine instructions.

The largest of these proofs, the initial functional correctness verification
produced about 200,000 lines of Isabelle/HOL proof scripts [7] with a team of on
average 12 people over 4 years (about 7 full-time equivalent).

During the subsequent proofs, the sel.4 kernel evolved. While there were no
C-level defects to fix in the verified code base, changes included performance
improvements, API simplifications, additional features, and occasional fixes to
parts of the non-verified code base of sel.4, such as the initialisation and assembly

* NICTA is funded by the Australian Government through the Department of Communications and
the Australian Research Council through the ICT Centre of Excellence Program



portions of the kernel. Some of these changes were motivated by the security
proofs, for instance to simplify them, or to add the scheduler with separation
properties. Other changes were motivated by applications the group was building.

This additional work increased the overall proof size to roughly 400,000 lines
of Isabelle proof script. Other projects of similar order of magnitude include the
verified compiler CompCert [8], the Verisoft project [1] that addressed a whole
system stack, and the four colour theorem [4].

There is little research on managing formal verification on this scale and the
experience in our verification was that this scale makes a significant difference
to how proofs are developed and maintained [3]. The key difference to smaller
proofs is that no single person at any time understands the whole proof, or
even the whole code base in detail. Only the fact the proof is machine-checked
gives us confidence in the soundness of the overall result. Of course, we are
not the first to recognise the issue of scale for proofs. All of the other large-
scale verification projects mentioned previously make note of it, as did previous
hardware verifications [5].

While many of these issues are similar to traditional software engineering,
there are differences that could be exploited to increase the productivity of the
verification engineer and to increase the scale at which such proofs can be applied.

In particular, large-scale proofs have the following two properties that make
them more amenable to automation and assistance by Al and machine learning
techniques than traditional code development:

— it is cheap and easy to check if an existing proof is correct
— in a large-scale proof there are often a large number of analogous or similar
cases and proof fragments

The first property is interesting for proof refactoring: while in code refactoring
it is important to be semantics preserving, in proof refactoring, there is an easy
check if the refactored proof still works.

This can be exploited in techniques that deal with the second property.
Assuming we were able to automatically find a similarity between a current
proof goal and some previous proof fragment, a proof suggestion based on this
fragment does not necessarily have to be correct. It will be checked by the prover
anyway, and it may even be useful to the verification engineer in its incorrect
form, because she may be able to adjust it. Specific areas where such techniques
might be useful are

— finding analogies within one proof with a large number of cases, and suggesting
proofs to the engineer, or optimising proof search based on previous cases;

— finding and exploiting similarity between recurring proof fragments distributed
over different proofs, in particular proofs of other verification engineers;

— suggesting and automating lemma extraction for recurring proof fragments;

— automatically generalising and re-proving lemmas whose statement was
needlessly specific to achieve better re-use;

— suggesting, e.g. via auto-completion, high-level proof structure that has been
extracted from previous proofs with similar statements.



It is crucial for such tools not to get into the way of normal proof interaction
if they are to be useful to the verification engineer. Code completion and similar
techniques from traditional code-based integrated development environments
that are suggestive rather than prescriptive are directly applicable.

Isabelle’s PIDE interface [13] is already making good progress in this direction,
for instance providing automatic feedback on counter examples or searching for
proofs in the background while the engineer goes about her work. Such techniques
benefit immensely from the increasing number of cores on desktop machines,
because multiple separate analyses distribute trivially over them.

With more sophisticated suggestion and analysis tools becoming available,
there should not only be room for significant improvements in productivity
for large-scale proofs, and but also the possibility of making such proofs more
accessible to new team members. In our experience, learning Isabelle is easy.
Finding your way in a large proof and code base is much more time consuming.

References

1. Alkassar, E., Hillebrand, M., Leinenbach, D., Schirmer, N., Starostin, A., Tsyban,
A.: Balancing the load — leveraging a semantics stack for systems verification.
JAR: Special Issue Operat. Syst. Verification 42, Numbers 2—4 (2009) 389-454

2. Andronick, J., Greenaway, D., Elphinstone, K.: Towards proving security in the
presence of large untrusted components. In : 5th SSV, USENIX (2010)

3. Bourke, T., Daum, M., Klein, G., Kolanski, R.: Challenges and experiences in
managing large-scale proofs. In : Conferences on Intelligent Computer Mathematics
(CICM) / Mathematical Knowledge Management, Springer (2012)

4. Gonthier, G.: Formal proof — the four-color theorem. Notices of the American
Mathematical Society 55(11) (2008) 1382-1393

5. Kaivola, R., Kohatsu, K.: Proof engineering in the large: Formal verification of
pentium®) 4 floating-point divider. In: Correct Hardware Design and Verification
Methods, Springer (2001) 196-211

6. Klein, G., Andronick, J., Elphinstone, K., Murray, T., Sewell, T., Kolanski, R.,
Heiser, G.: Comprehensive formal verification of an OS microkernel. Trans. Comp.
Syst. 32(1) (2014) 2:1-2:70

7. Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P., Elkaduwe,
D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Winwood, S.:
seL4: Formal verification of an OS kernel. In: SOSP, ACM (2009) 207-220

8. Leroy, X.: Formal certification of a compiler back-end, or: Programming a compiler
with a proof assistant. In : 33rd POPL, ACM (2006) 42-54

9. Liedtke, J.: Towards real microkernels. CACM 39(9) (1996) 70-77

10. Murray, T., Matichuk, D., Brassil, M., Gammie, P., Bourke, T., Seefried, S., Lewis,
C., Gao, X., Klein, G.: sel.4: from general purpose to a proof of information flow
enforcement. In: IEEE Symp. Security & Privacy, (2013) 415-429

11. Sewell, T., Myreen, M., Klein, G.: Translation validation for a verified OS kernel.
In: PLDI, ACM (2013) 471-481

12. Sewell, T., Winwood, S., Gammie, P., Murray, T., Andronick, J., Klein, G.: sel.4
enforces integrity. In : 2nd ITP. Volume 6898 of LNCS., Springer (2011) 325-340

13. Wenzel, M.: Isabelle/jEdit - a prover IDE within the PIDE framework. In: Confer-
ences on Intelligent Computer Mathematics (CICM) / Mathematical Knowledge
Management. Volume 7362 of LNCS., Springer (2012) 468-471



	Proof Engineering Challenges for Large-Scale Verification

