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ABSTRACT 
Context: Recent projects such as L4.verified (the verification of 
the seL4 microkernel) have demonstrated that large-scale formal 
program verification is now becoming practical.  

Objective: We address an important but unstudied aspect of proof 
engineering: proof productivity.  

Method: We extracted size and effort data from the history of the 
development of nine projects associated with L4.verified. 

 Results: We find strong linear relationships between effort and 
proof size for projects and for individuals. We discuss 
opportunities and limitations with the use of lines of proof as a 
size measure, and discuss the importance of understanding proof 
productivity for future research. 

Conclusions: An understanding of proof productivity will assist 
in its further industrial application and provide a basis for cost 
estimation and understanding of rework and tool usage. 

Categories and Subject Descriptors 
D.2.4 [Software Engineering]: Software/Program Verification– 
correctness proofs; D.2.9 [Software Engineering]: Management 
– productivity. 

General Terms 
Management, Measurement, Verification. 

Keywords 
Proof engineering, Productivity, Proof sizing, Formal verification. 

1. INTRODUCTION 
The L4.verified project completed the machine-checked formal 
verification of the full functional correctness of the source code 
(and later also the binary code) of the embedded systems 
microkernel seL4 [5]. It demonstrated that the long-held dream for 
the use of formal verification in software engineering from 
specification through to code is becoming realizable. Formal 
verification is cost-effective for some highly critical systems [5], 
but is too expensive for most projects. Increasingly, software 
systems are safety- or security-critical and so could benefit from 
formal verification to provide direct evidence about system 
dependability. Nonetheless, to broaden the reach of formal 
verification requires that its cost be reduced. 

Formal proofs are not present in traditional software engineering, 
but are an intrinsic part of projects using formal verification [2]. 
The major cost in the L4.verified project was the effort required to 
create and maintain proofs. While 2.2 person-years were required 
to design and implement seL4, the formal verification took more 
than 20 person-years [5]. The importance of proof engineering has 
been previously recognized for hardware verification [4], and also 
for the L4.verified project [2]. However, most proof engineering 
research has focused on proposing new technologies. For cost-
effective proof engineering, a key consideration is proof 
productivity. Understanding proof productivity is also key for 
effort estimation models for projects using formal verification [2]. 
We report on a study of proof productivity based on a 
retrospective analysis of nine formal verification projects. We first 
provide background on software development productivity and 
proof engineering. Then we describe the method, analysis and 
discussion, of our study of overall productivity for these projects, 
and of productivity variation across individual engineers. We find 
that effort is highly correlated with proof size. This result was 
surprising to the verification experts involved in the project: 
clearly, there are proofs that are much simpler and less complex 
than other proofs, and everyone will have seen small, elegant 
mathematical proofs that were very hard to find initially, and so 
would need uncharacteristically high effort to produce. Our results 
show that this effect did not have a great influence over the 
lifetime of larger software verification projects. 

2. BACKGROUND 
2.1 Software Development Productivity 
There is now a good understanding of factors that drive software 
development productivity and the differences in productivity 
experienced in different organizations and software domains [10]. 
A distinction is made between context factors, scale factors and 
effort drivers. An extensive study [11] identified the most 
common context factors as programming language, application 
domain, and development type. Factors that influence the effect of 
scale are team size, process maturity, project novelty, complexity 
of interfaces, and project management complexity [10]. Effort 
drivers [11] can include team capability and experience, software 
complexity, project constraints, and tool quality and usage. 

In software, productivity has usually been measured as output in 
terms of lines of code (LOC) or function points produced per unit 
of effort expended. So, for example, the European Space Agency 
reported 0.35 kLOC per person month for on-board systems and 
0.58 kLOC per person-month for “other” systems [10]. 

2.2 Formal Verification & Proof Engineering 
Formal verification can show that all possible behaviors of a 
program are allowed by a specification. Unlike testing, formal 
verification checks all behaviors for all allowed inputs. The 
semantics for programs and specifications are defined by 
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mathematical models of the behavior and requirements of real-
world computer systems. The checks performed by formal 
verification use mathematical proof. Programs can be large and 
complex, as is the semantics of real-world computer systems, so 
verification proofs are too. Proof engineering is supported by tools 
and techniques to manage proof size and complexity. Proofs have 
many qualities. The most important is logical soundness, but 
despite the size and complexity of verification proofs, their 
soundness can be achieved with extremely high confidence using 
modern theorem provers such as Isabelle [6], used in the 
L4.verified project [5]. Other qualities targeted include readability 
[12], and maintainability [3]. Previous research has recognized the 
importance of proof productivity [9], but apart from laboratory 
experiments on user interaction [1] we find no prior reported 
empirical studies of proof productivity. 
Isabelle is an interactive theorem prover. Users create proofs by 
writing proof scripts, which Isabelle checks for validity by 
execution. Theories and formal specifications are also represented 
in these scripts. Proofs contain many steps achieved by automated 
search or decision procedures, but because of the extreme 
complexity of formally verifying deep semantic properties of 
programs, fully automatic proof is not feasible. So, these proofs 
also contain some hand-guided steps. The overall interaction style 
is much like that of programming [1]. In proof engineering, the 
most costly input is the time required by proof engineers to create 
and maintain proof scripts.  

3. METHOD AND DATA 
We conducted a retrospective study of projects creating formal 
specifications and proofs built on the main L4.verified result. For 
the first five projects in Table 1 we derived new data sourced from 
management records, weekly reports, and the Mercurial version 
control repository used to record changes to the proof scripts. 
Data on the final four projects in Table 1 was sourced from 
projects reported in [5] with additional input from project 
managers. Below we describe the projects, how we measured 
effort and size, and the productivity factors we studied. 

3.1 Projects Studied 
We selected nine non-trivial completed projects with cleanly 
identifiable outcomes (i.e. not intermingled with other work), 
which all used Isabelle for proof or specification. The L4.verified 
project and follow-up work produced three formal specifications 
of seL4, at increasing level of abstraction: the Exec specification 
models an (executable) representation of seL4's design1; the 
Abstract specification is a complete functional specification; and 
the CapDL specification is used to initialize sel4-based systems 
by only describing the capabilities (access rights) between 
components, abstracting away everything else. The six other 
artifacts we study here are proofs. Three of them are proofs of 
refinement: Code-to-Exec, Exec-to-Abstract and Abstract-to-
CapDL. They show that all the behaviors of one specification 
(e.g., Exec) are included in the behavior of a more abstract 
specification (e.g., Abstract). We also study two security proofs: 
Info.flow and Integrity, showing that (the abstract specification of) 
sel4 enforces information flow and integrity of components 
running on top, according to a given security policy describing 
____________________ 
1 This executable specification is generated from a Haskell 

implementation of seL4. The effort numbers reported here for 
producing Exec include the effort of producing the Haskell 
implementation, plus the effort of producing the Haskell-to-
Isabelle translator. 

allowed access rights. The last proof we study links a capDL 
description to the corresponding security policy. The original 
L4.verified project produced Code-to-Exec Refinement, Exec-to-
Abstract Refinement, Exec Spec, and Abstract Spec. Together, 
these produce the proof of functional correctness of seL4, 
showing that seL4's C code is correct with respect to its 
functional, abstract specification. The proofs are described 
elsewhere [5]. For each project, we explicitly defined the subset of 
the overall repository containing just the relevant proof script files 
and changes occurring during the term of the project. All projects 
worked with the same background theory from L4.verified, and 
used a broadly consistent proof scripting style. 

3.2 Measuring Input (Effort) 
Effort was determined by managers for each individual for each 
project, where possible using weekly reports from individuals. For 
each person, for each week, fractions of a person-week were 
recorded for each of ‘Initial Discussion’, ‘Actual Proof’, ‘Tool 
Improvement’, ‘Other Project’, ‘No PR’, and ‘Leave’. ‘No PR’ 
was recorded when no progress report or other historical record 
was available for an individual in a week. These fractions were 
checked to sum to the EFT-person-week (1.0 for full-time staff) 
for each week for each person. In productivity calculations below, 
we measure total effort as the sum of ‘Initial Discussion’ and 
‘Actual Proof’, and add ‘No PR’ values in sensitivity analyses. 

As a data quality check, we cross-referenced effort records with 
Mercurial. The only “missing” changes were for people with zero 
proof effort (their effort was on other work). Some changes were 
made by people with no effort records, but after review, these 
were judged by the project managers to have been a small number 
of inconsequential changes, and were excluded from analyses. As 
noted above, data for the first five projects in Table 1 was derived 
anew for this paper while data for the final four projects was 
derived from the earlier paper [5] with assistance from the 
authors. 

3.3 Measuring Output (Proofs) 
We measured Isabelle proof scripts using two variations on Lines 
of Proof, analogous to Lines of Code from traditional software 
development. (We discuss this in section 5.1.) For each change, 
Mercurial reports lines added (including lines modified), lines 
deleted (including lines modified), and the parent commit(s). We 
exclude changes that only merge parallel work, and so all changes 
that we consider (except for the first) have exactly one parent. We 
excluded large outliers (less than 1% of changes) that were only 
textual or syntactic changes (i.e. had no substantive proof work) – 
these were mostly file or constant renames. We define lines-work 
as the sum of raw lines added and deleted. For each change in 
each proof, we examine the repository at that time and calculate 
the normalized line count of the proof by excluding comments and 
white-space. We define repo-delta as the absolute difference in 
this size for each change compared to its parent. This is somewhat 
like lines added minus lines deleted. Neither is an ideal measure 
of output or work: lines-work includes all comments and white 
space and double-counts modified lines, whereas repo-delta 
excludes modified lines. Nonetheless, they provide bounds on the 
“true” lines of work. Final size is final lines of proof. 

3.4 Productivity Factors 
We identified potentially important factors in section 2.1. The 
context factors (programming language, application domain, and 
development type) are all constant for our projects. The scale 
factor of process maturity is constant, but team size and 



novelty/complexity vary. The effort driver of tool quality and 
usage is constant, but others vary in our projects. 

We investigated the following project-level factors: final size of 
the project (excluding comments and white-space); maximum 
team size; schedule pressure (as a project constraint); and overall 
difficulty (reflecting novelty and complexity). Schedule pressure 
and overall difficulty were recorded on a 5-point Likert scale from 
very high to very low. Assessments of factors for each project 
were jointly agreed by two managers. We also investigated four 
individuals factors, i.e. years experience with: Isabelle, formal 
methods or theorem proving (including Isabelle), the domain (of 
operating system development or verification), and work on 
L4.verified projects specifically. These values were collated by a 
project manager in consultation with the individual engineers. 

4. ANALYSIS AND RESULTS 
We present results first for the nine projects overall, and then for 
the 24 individual contributions to five of those projects for which 
we had the data (first 5 in Table 1). Both R and SPSS V22 was 
used for analysis. 

4.1 Overall Project Productivity 
Table 1 shows characteristics for the nine projects.  

Table 1 Characteristics of the nine projects. Final Size is in 
kilo-Lines of Proof, Total Effort in person-weeks. Schedule 
Pressure and Overall Difficulty range from very low to very 
high. Maximum Team Size is headcount. 

 Final 
Size 

Total 
Effort 

Sched. 
Press. 

Overall 
Diffic. 

Max 
Team 

CapDL Spec 2.14 27.5 AV LO 5 
CapDL-policy 
proof 0.85 11.3 LO AV 1 

Abstract-to-
CapDL 
Refinement 

20.4 66 AV AV 5 

Integrity 7.05 28.5 V.HI HI 4 

Info. Flow 27.1 75.9 V.HI V.HI 8 
Exec- to- 
Abstract 
Refinement 

96.6 368 HI V.HI 6 

Code-to-Exec 
Refinement 53.34 138 V.HI HI 6 

Exec Spec  
Haskell 6.01 92 AV HI 1 

Abstract Spec 4.9 15.3 AV AV 3 
 

Productivity varies, but this is explained by a constant overhead: 
Total Effort = 9.98 + 3.35*Final Size. Figure 1 shows this linear 
relationship. For our nine projects, the correlation is strong 
(R2=0.914, p<.001), and not sensitive to inclusion of the ‘No PR’ 
effort. (We recognize the limitations arising from our small 
sample size.) ‘Final’ size was taken from the end of the initial 
development periods, to match the periods for the reported effort. 
Person-years from [5] are scaled to person-weeks assuming 230 
working days per year and 5 days per week. Visually, there may 
be two outliers, both from [5]: the very large abstract refinement 
proof, and the very detailed executable specification. Effort for 
the latter includes the two person-years spent programming the 
Haskell prototype of seL4. Although the correlation is high, we 
investigated possible project-level productivity factors in multiple 

regressions. The effect of these is small and not significant at 
0.05, but there was weak evidence that schedule pressure is 
associated with decreased effort, and overall difficulty and max. 
team size with increased effort. These results are consistent with 
prior research [10]. We also investigated each possible individual 
productivity factor (the various types of years of experience) in 
multiple regressions against individuals’ total effort. There was no 
evidence that any were significant in this dataset. 

 
Figure 1 Scatter plot of project total effort vs. final size  

4.2 Individual Productivity 
Figure 2 shows the linear relationship between size and effort for 
all of the 24 individual contributions to five of the projects for 
which we had individual data. The correlation is very strong 
(R2=0.93, p<0.001), and is not sensitive to inclusion of the ‘No 
PR’ effort (R2=0.92, p<0.001). With the alternative size measure 
lines-work, there are of course different coefficients for the line of 
best fit, but again there is a strong linear relationship (R2=0.91,  

 
Figure 2 Scatter plot of total effort vs. sum of repo-delta size of 
all changes made in the 24 individual contributions to the four 
proofs and the specification. 
p<0.001 for total effort, and R2=0.91, p<0.001 with ‘No PR’ 
included). Final size is not meaningful for individuals’ work, so is 
not examined. 



5. DISCUSSION 
5.1 Sizing Proofs 
Lines of Code is widely known to be an imperfect measure of 
software. Lines of Proof is likewise problematic and improved 
size measures are required. An ideal measure of size would reflect 
the size of the proof problem: the difficulty or content of the proof 
goal. For formal verification this should reflect the specification 
[8] and the program. 

Fine-grained measures of effort spent on individual proofs are 
difficult to collect in practice. However, we have found Lines of 
Proof are very highly correlated with effort. This may support the 
use of lines as a proxy for effort in future research. Given a 
consistent proof style, this result could help to validate new size 
measures against lines of individual proofs. Alternatively, under a 
given size measure, this result may help to validate productivity 
improvements from new proof engineering technologies. 

5.2 Threats to Validity 
In software engineering it is common to consider experimental 
validity in terms of construct, internal, and external validity [13]. 
Runeson and Höst [7] add reliability to this list. We discuss above 
the construct validity concern of Lines of Proof being a poor 
measure of size. The size measures lines-work and repo-delta both 
have limitations as discussed in section 3.3, but bound the true 
value of lines changed, and our overall results are supported under 
either measure. Subjective measures used in this study have been 
carefully defined for the persons from whom measures were 
obtained so as to avoid construct validity issues to the extent 
possible. There is a possibility that factors not measured in this 
study have an impact on productivity. Because the interaction 
style of our proofs resembles programming [1], we have carefully 
investigated factors previously reported to affect programming 
productivity, in order to ensure internal validity in our study. Our 
use of projects from a single context (L4.verified) aids internal 
validity, but limits external validity. It is not yet known if or how 
our findings may generalize to formal verification projects beyond 
L4.verified. We tried to ensure reliability of data collection and 
analysis by having a review process with multiple researchers. 

6. CONCLUSIONS AND FUTURE WORK 
Proof engineering research can help to bring the benefits of formal 
verification to more software engineering projects, but the 
assessment of cost-effectiveness of formal verification (and its 
improvement) hinges on understanding proof productivity. We 
have shown that proof effort and size are very strongly linearly 
related, in our study of nine projects building on L4.verified [5]. 
This result holds for the projects overall, but also for the 
individuals working within those projects. 

An understanding of proof productivity can inform the creation of 
cost estimation models to select formal methods in projects, and 
also for detailed project planning. As with software development, 
proof productivity is likely to be affected by rework. We have 
seen initial evidence for this in the differences between sum of 
lines-work and final size. Deeper study is required on the impact 
of dependencies on proof rework and concurrent work. 

Improvements to proof engineering may derive from proof 
automation, structures for reuse, refactoring, or proof patterns. A 
key question will be: do new tools or techniques improve on 
existing levels of proof productivity? The results in this paper 
provide an initial benchmark of proof productivity for future 
research. However, as discussed, Lines of Proof is a poor size 
measure for this, and improved size measures are required. 
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