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Abstract—Formal verification can provide the highest degree
of software assurance. Demand for it is growing, but there are
still few projects that have successfully applied it to sizeable,
real-world systems. This lack of experience makes it hard to
predict the size, effort and duration of verification projects. In
this paper, we aim to better understand possible leading indicators
of proof size. We present an empirical analysis of proofs from the
landmark formal verification of the seL.4 microkernel and the two
largest software verification proof developments in the Archive
of Formal Proofs. Together, these comprise 15,018 individual
lemmas and approximately 215,000 lines of proof script. We find
a consistent quadratic relationship between the size of the formal
statement of a property, and the final size of its formal proof in
the interactive theorem prover Isabelle. Combined with our prior
work, which has indicated that there is a strong linear relationship
between proof effort and proof size, these results pave the way
for effort estimation models to support the management of large-
scale formal verification projects.

I. INTRODUCTION

Recent software attacks on critical systems such as cars [1]
and pacemakers [2] have helped to increase demand for
formal software verification [3], whereby the security, safety
or reliability of software is demonstrated using mathematical
techniques. Desired properties are given as formal statements,
which are then shown to be satisfied using formal proofs. Formal
verification is recognised as providing the strongest guarantees
about software behaviour: it is mandated for the highest
assurance level of the Common Criteria standard [4], and its
importance for complementing software testing is recognised
in the DO-178C certification scheme for avionics [5].

Some recent landmark formal verification projects include
the certified compiler CompCert [6] and the microkernel
seL4 [7]. These were multi-year efforts, producing hundreds of
thousands of lines of machine-checked proofs. Such projects use
interactive theorem proving, which requires human creativity
and effort to guide the proof but is not constrained to simple
properties or finite state spaces. This allows for proofs of strong
properties about low-level software. Most of the effort in these
projects is spent in writing machine-checked proofs.

Despite these successes, few projects have yet tackled the
challenge of verifying the implementation code (source or
binary) of sizeable real-world software. Because there is little
experience with large-scale formal verification, it is difficult to
predict its required effort, duration and cost. Earlier work [8] has
showed the need for a better understanding of how to measure
artefacts in formal methods, to inform costs and estimation
models. An analysis of the existing literature [9] revealed a

shortage of empirical studies to provide industry with validated
measures and models for the management and estimation of
formal methods projects. As Stidolph and Whitehead [10] state
“experienced formal methodologists insist that cost and schedule
estimation techniques are unsatisfactory and will remain so
until a large body of experience becomes available”. In short,
more research is required in the field of proof engineering.

Our ultimate goal is to provide estimation models for proof
effort. In prior work [11], we analysed proof productivity,
and revealed a strong linear relationship between effort (in
person-weeks) and proof size (in lines of proof script), for
projects and for individuals. Proof size, however, is only known
when the project is completed. So, in this paper we examine
the inputs to software verification projects: formal statements
of the properties to be proved about programs, and formal
specifications of the programs. Our goal is to identify measures
of these formal statements that relate to the final size of their
interactive proofs.

We present results of an empirical analysis of a large number
of proofs written in the Isabelle interactive theorem prover [12].
We measure the size of each lemma, in terms of the total
number of concepts needed to state it, and compare that to
the total number of lines used to prove it. We analysed four
large sub-projects of the seL.4 verification work [7] as well as
two proofs from the Archive of Formal Proofs (AFP) [13], an
open collection of Isabelle proofs. From these 6 projects, we
analysed a total of 15,018 lemma statements and associated
proofs, covering a total of more than 215,000 lines of proof.

We find a consistent quadratic relationship between state-
ment size and proof size, with the R? for the quadratic
regressions varying from 0.154 to 0.845. One of the four seL4
sub-projects stands out with a lower R? and a significant
collection of outliers, with proof sizes much smaller than
would be expected given the statement size. Investigation
revealed that these outliers were caused by over-specified
lemma statements (see Section III-E), with large constants
mentioned unnecessarily, effectively inflating their statement
size. To test this hypothesis, we defined an idealised measure
for statement size that is an approximation of its minimum size.
Using this measure greatly strengthens the relationship between
statement size and proof size across all the projects, with R?
between 0.73 and 0.937. This implies that there is a very strong
quadratic relationship between statement size and proof size,
when statements are not unnecessarily over-specified.

This confirms an early hypothesis formulated by the leader
of the seL4 verification project. Towards the end of the project,



he was required to provide an estimation (and justification)
of time, effort and cost needed to complete the project. The
experience from the proofs done by that time suggested that
“for microkernel refinement proofs, proof size scales roughly
quadratically with code size”. Microkernel code is highly non-
modular by nature, and so verification is dominated by proving
invariants. Each invariant needs to be preserved by each feature,
which in turn relies on and modifies data structures used by
other features. Our current work provides empirical evidence
for this hypothesis, by correlating proof size to statement size.

Our main contribution in this paper is the identification of a
concrete measure for the size of formal lemma statements that
we show has a strong, quadratic relationship with proof size. A
formal statement of program correctness must be known before
beginning its verification. Thus its size can serve as a leading
indicator of proof size. Proof size has in turn been shown to be
strongly correlated to proof effort [11]; the measure presented
here is therefore the first potentially useful leading indicator
for estimating proof effort for interactive verification projects.

II. RELATED WORK

Research to date on formal methods measurement has
concentrated on the measurement of formal specifications of
programs and also on the relationships between these measures
and system implementations. In Olszewska and Sere [14] the
authors report on their use of Halstead’s software science
model [15] for the measurement of Event-B specifications. They
used this framework to measure the “size of a specification,
the difficulty of modelling it, as well as the effort”. The
specification metrics developed were seen as useful descriptors
of the specifications studied when applied in the DEPLOY
project [16]. Some research has also been carried out on other
specification metrics. In 1987 Samson et al. [17] investigated
metrics that might aid in cost prediction for software developed.
They use McCabe’s cyclomatic complexity metric [18] and
lines of code to measure the implementation of a small system
and measures of operators and equations to measure the HOPE
formal specification. Although their sample size was small, they
found a relationship between their measures of the specification
and implementation. Tabareh’s masters thesis [19] contained
an investigation of relationships between specification and
implementation measures. A number of specification metrics
were defined for Z specifications. These were size-based metrics
such as lines of code and conceptual complexity; structure based
metrics such as logical complexity; and semantic based metrics
such as slice-based coupling, cohesion and overlap. In a more
recent paper Bollin [20] evaluated the use of specification
metrics of complexity and quality in a case study comprising
more than 65,000 lines of Z specification text. In King et al. [21]
an investigation of Z and the use of testing in a commercial
software development project revealed that, the Z proof was
the most “efficient phase at finding faults” followed by the
system validation phase.

In summary, previous research has investigated relationships
between specification measures and implementation measures.
Often this has been motivated by the desire to predict effort
from implementation characteristics (e.g. size). Research has
also investigated the types of measures that can be used for
formal specifications. However we have been unable to find any
research investigating the relationship between specification

and proof measures, particularly size of proof. Our work aims
to fill this gap.

III. APPROACH AND MEASURES
A. Formal Verification - Background

A software verification project aims to establish that a
program satisfies some property. A property might state that
a program meets a high-level specification, or satisfies an
invariant, or enforces security mechanisms. In an interactive
theorem prover (ITP), such a property must be given as an
unambiguous mathematical statement S, which may refer to
the (formalised) program code and its formal specification. To
prove S, we provide a proof P which appeals to the inference
rules of the logic of the ITP, and may also appeal to intermediate
lemmas. The set of all the definitions, intermediate lemmas and
final proof P of S form the proof development establishing
that the program satisfies the property expressed in S. S is then
referred to as the top-level statement or property of the proof
development. This P, known as a machine-checked proof, is
the strongest known support for the assurance of S. Ultimately
we wish to estimate the effort required to prove P for a given
S. To this end, we chose to investigate the relationship between
the complexity of S and the size of P.

We make the simplifying assumption that proof develop-
ments can be divided into three stages. (1) All definitions
are written. (2) Statements about definitions are hypothesised
as lemmas. (3) Each lemma is proved correct by writing
an interactive proof. In practice, proofs never proceed quite
this neatly. The validity of this assumption will be discussed
in Section VII.

B. Proofs and Specifications

A proof development in an ITP is comprised of definitions,
lemma statements and proofs of those lemmas. Definitions are
used to introduce new constants and give them semantics, such
as function specifications, program invariants or data structures.
These definitions are given in the term language of the theorem
prover, which has a precise syntax and semantics. Lemma
statements relate constants, positing a fact that is then proved.
Similar to definitions, lemma statements are written in the
term language. Term and proof languages vary significantly
between theorem provers, however they all share similar
traits. A term can express logical statements, with connectives
(e.g. conjunction, implication) and quantifiers (e.g. universal,
existential). Proof languages have syntax for appealing to
automated reasoning tools and previously proven results. A
proof, in this context, is a sequence of appeals which eventually
demonstrate that a lemma statement is true.

As a running example, consider the following definitions of
two new constants C and E, which mention some propositions A
and B from a previous proof development. They also depend on
the exclusive-OR operator ¢ and the usual logical connectives.

C=(-A) Vv (-B)
E=BaC

The constants implicitly form a dependency graph. A
constant ¢ directly depends on another constant ¢’ if ¢’ appears
in the definition of c. This represents an edge in the constant



dependency graph from node ¢ to node ¢’. In our example,
E directly depends on B, C, and the & connective. We say
that ¢ depends on ¢” if ¢’ is reachable from ¢ in the constant
dependency graph. In other words, ¢’ must be defined at some
point in order to define c. In our example E depends on all of
A, B, C, and the three connectives &, V and —.

Similarly lemmas also implicitly form a dependency graph:
a lemma [ directly depends on another lemma I’ if {’ is used
to justify some step in the proof of /. Lemma [ is then said to
depend on [” if at any point " had to be proved for the proof of
! to hold. In our example, one can state the following lemmas
to be proved (where the — operator is logical implication).

E — (AV-B) o)
EAB — A )

The truth of Statement 1 and Statement 2 simply relies on the
definitions of E and C and standard propositional logic. Their
Isabelle proofs might look like the following:

lemma Eql: E — (A V —B)

unfolding E-def C-def

apply (rule HOL.impI)

apply (elim xorE HOL.disjE HOL.conjE)
apply (subst (asm) HOL.de-Morgan-disj)
apply (subst (asm) HOL.not-not)
apply (rule HOL.disjI1)
apply (elim HOL.conjE)

apply assumption

apply (rule HOL.disjI2,assumption)+

done

lemma Eq2: EAB — A
apply (metis Eql)
done

It is not necessary to understand these proofs. We observe,
however, that the proof of the lemma Eq1 refers only to facts
from the HOL proof development, which defines the Higher
Order Logic of Isabelle, as well as the facts that capture the
definitions of C and E, C-def and E-def respectively, plus the
fact xorE that in this example has already been proved in an
existing proof development on which it builds.

C. Proof Size

In our analysis we consider a given lemma and relate its
statement size to its proof size. Formally we define the size of
the proof of a lemma [ to be:

Proof size of lemma /: the total number of source
lines used to state and prove [, excluding definitions.

Note that this includes the proofs of all lemmas that [
depends on. We exclude definition declarations (such as C-
def) because, although they are part of the proof source, we
are interested in the total number of new source lines written to
complete stages (2) and (3) of a proof development; definition
declarations are all written in stage (1).

We refine this notion of size slightly by only counting
source lines from a particular proof development D. We call
this the proof size of I with respect to D, defined as follows.

Proof size of lemma [ with respect to proof
development D: the total number of source lines
required to state and prove [, excluding definitions,
as well as lemmas and proofs outside of D.

The reason that we contextualise proof size this way is because
proof development is cumulative, and new proofs often build
on old ones. For example, a proof development D, proving the
correctness of Dijkstra’s algorithm, would appeal to lemmas
and definitions from an existing proof development G, a
formalisation of graph theory. G would provide a definition of
a graph, edges, paths, and would have lemmas proved about
reachability. When measuring the size of the proof of a lemma
from D in order to gauge its effort, one would consider the
lemmas in G to have come at zero cost, and not take their size
into account. More precisely, in general we measure the size
of any proof of a lemma from a proof development D with
respect to D, in order to exclude from its size any pre-existing
lemmas on which it depends.

In our example, all the facts used in the proof of Eql come
from an pre-existing proof development except C-def and D-
def that are the definitions of C and D respectively. Thus none
of the direct dependencies of the proof of Eql are counted
when computing its size. The size of the proof of Statement 1
therefore is just its immediate size (i.e. 11 lines), while the
proof of Statement 2 would be measured as its immediate size
summed with the size of Statement 1 (i.e. 3 + 11 = 14 lines).

D. Raw Statement Size

Here we define a measure for the statement of [ that we
found correlates well with the proof size of [ as defined above:

Raw statement size for lemma [: the total number
of unique constants required to write the statement
for [, including all of its dependencies, recursively.

“Unique” specifies that each constant is counted at most once
per statement. This measure, importantly, is computable after
stage (1) in the proof development as it only requires definitions
to have been written, and does not depend on proofs. We refer
to this as a statement’s raw size. This is distinguished from
the statement’s idealised size, introduced later.

Similarly to proof size, it often makes sense to measure
statement size with respect to some proof development D.
Doing so excludes all constants that fall outside of D. However,
while we measure the size of a proof in proof development D
with respect to D itself, it often makes more sense to measure
statements in D with respect to a larger proof development D’
that includes D. In the example of the previous section, when
measuring the size of Statement 1, we might choose to count
the sizes of A and B, even though these constants have been
defined in a pre-existing proof development, and even though
proofs about A and B in this pre-existing development will not
be counted in the size of the proof of Statement 1. The reason is
that the effort of proving a new fact about a constant c (here e.g.
A) might be highly impacted by the size of c even though it has
been defined in a pre-existing development. In the context of
the seL4 proofs we observed this effect to be extremely strong,
where most statements referring to seL4’s abstract specification
would have proofs which follow the structure of the abstract
specification and carry the complexity of reasoning about it.



In the example of the previous section, assume we choose
to measure the size of Statement 1 and Statement 2 with
respect to the entire proof development down to the axioms
of the logic, i.e. including the definitions of A and B and all
the operators. Assume that A and B are complex constants
with sizes 100 and 200 respectively. For simplicity we assume
their dependencies are disjoint, so C would have a size of
1+ 100+ 200+ 1+ 1 = 303, where we add 1 for C itself,
the size of A, the size of B and then the size of = and V (we
assume for simplicity that they are defined axiomatically). We
can then calculate the size of E as 1 4+ 1 4+ 303 = 305, by
adding 1 for E itself, 1 for ¢ (also assumed to be defined
axiomatically) and then the size of C. Note that we do not
add the size of B, as it already has been considered when
calculating the size of C, and we are only counting unique
constant dependencies. Then Statement 1 would have a size of
305 4+ 1 = 306, where we count the size of E and the size of
— (the other constants being already considered in the size
of E). Similarly Statement 2 would have a size of 306.

Note that both proof size and statement size are inherently
recursive; the proof size of [ includes the size of its dependent
lemmas, and the statement size of [ is based on its dependent
definitions. No attempt is made to measure the immediate size
of any lemma, as this is far too susceptible to fluctuations in
individual proof style. In our example, Statement 2 has a small
immediate proof size (3 lines), but would be given the same
statement size as Statement 1. By considering each in terms of
all of its dependencies we get a much more robust measure.

E. Idealised Statement Size

Most lemmas make stronger assumptions than are actually
necessary. In particular, a lemma might have a concrete term
where an abstract one will suffice: the statement “1 is odd” is
less general than the statement “2n + 1 is odd”, which has an
abstract term “2n + 1” in place of the concrete term “1”. It is
the job of the proof engineer to decide the appropriate level of
generality for a lemma, based on its intended use. In cases where
a constant with a large definition is included unnecessarily, we
observe a large discrepancy between statement and proof size.

In our example, consider the statement —C Vv C. Suppose
it was proved in one step by appealing directly to the law of
excluded middle, an axiom of HOL in Isabelle. The raw size of
this statement is 303 + 1+ 1 = 305. This is an over-estimation
of the statement’s complexity because the statement mentions
C unnecessarily — C could be abstracted without affecting the
proof. Doing so (by replacing the constant C by a variable )
would yield a statement with size of just 2 (1 for each logical
connective), a much better indication of its proof complexity.

In practice, over-specificity can save effort in provers like
Isabelle, as it can aid automated reasoning by simplifying higher
order unification, a primitive procedure in Isabelle. Additionally
it is not often worth the effort to generalise a lemma that will
only be used once. As a result, it is common to see many
over-specific lemmas in large proof developments.

To address this, we introduce idealised statement size. The
idealised size for the statement of some lemma [ is the size it
would have been given had it been stated in its most general
terms. More precisely, it is defined as follows.

Idealised statement size for lemma [: the raw size
of the statement of [ had it been abstracted over all
possible constants such that I’s proof remains valid.

Note that we apply this recursively, conceptually removing
mentions of redundant constants in all dependant constants of
I’s statement. The idealised statement size of [ is always smaller
or equal to the raw size of [, as it may only remove unnecessary
constants from measurement. Unfortunately, computing this
size is undecidable as it would require a precise analysis of why
l is true. We show how it can be approximated in Section IV-C.

IV. MEASURES IN ISABELLE

The definitions given in the previous section abstracted
away from any specific theorem prover. Here we explain how
we compute these measures for Isabelle.

A. Measuring Proof Size

The interactive proofs in Isabelle we are interested in begin
with the keyword lemma or theorem, followed by a statement
in Isabelle’s term language. This is the lemma statement as
described in Section III-C. This is followed by an Isabelle proof,
which consists of structural proof elements and invocations of
automated tools known as proof methods. Once the statement
has been shown true, the proof ends with the keyword done or
ged. This statement is now a fact and is usable in other proofs.

To measure proof size, we distinguish what we call Isabelle
facts from Isabelle lemmas. A lemma is explicitly stated by
the proof engineer and then explicitly proved in Isabelle. A
fact is more general: it is a statement that has been proved by
any means. This includes lemmas, but also all the statements
automatically generated and internally proved by Isabelle. For
example, defining a recursive function f requires a proof of its
termination. In many cases this termination proof can be done
automatically with no manual invocations of tools. This fact is
implicitly used in any lemma [ that reasons about f, but it does
not have a proof size that can be measured in such a way that
would correspond to the effort required to prove it (since it is
automatic). Therefore, when computing the size of the proof of
a lemma [, we will only count the proof sizes of used lemmas.
Lemmas are the only facts whose proofs require substantial
human effort, therefore they are the only ones relevant to our
overarching goal of effort estimation.

For a given lemma [ in Isabelle we say that the lines between
the beginning and ending keywords (inclusive) constitute the
proof of [. The immediate size of [ is therefore simply its line
count. Then we compute all the lemmas which [ recursively
depends on and add their sizes to get [’s total size. Here
we only count unique lemmas: if multiple dependencies of
I depend on some [, we only count the size of I’ once.
We compute lemma dependencies by examining proof terms
produced by Isabelle [22], where a proof term is the internal
formal representation of a proof. The total size of [ with respect
to some proof development D considers all lemmas outside
of D to have size 0. Simply put, for each proof development,
lemmas not from that development (e.g. pre-existing library
lemmas), do not contribute to the measured size of proofs.

This measure approximates the proof size of | as described
in Section III-C. It is incomplete, however, as it does not include



source lines which must exist for [ to be valid, but for which
this dependency relationship is not easily found. For example,
the proof of | may depend on certain syntax existing, declared
with one line using the notation keyword. This is not factored
into the total size of /. The impact of this on the validity of
the measured proof size is assumed to be minimal, as the size
of Isabelle proof developments is dominated by proof text.

B. Measuring Raw Statement Size

Simple definitions can be added to Isabelle using the
definition command, where an equation is given in Isabelle’s
term language, introducing a new constant name and body.
Additionally there are commands for installing (co)inductive
datatypes and both partial and complete recursive functions [23].
Internally these create simple definitions based on the user
specification, proving canonical facts for interpreting them. In
our running example, the definition of C introduces the new
name C with body (—A) Vv (—B), and a new fact C-def for the
statement C = (—-A) V (-B).

To measure the size of a given lemma statement S as
described in Section III-C we recursively inspect all definitions
mentioned in S. The number of unique definitions traversed
will be the size of S according to this measure.

C. Approximating Idealised Statement Size

In Section III-E we introduced idealised statement size
as a refinement of raw statement size. Although computing
the idealised size of S is, in general, undecidable, it can be
approximated by examining the finished proof of S.

Intuitively, if S refers to C but the defining fact C-def of
the constant C does not appear in the dependency graph of the
proof of S, this means that the truth of S does not depend on
the definition of C, and that S could be rewritten by replacing
the constant C by a variable x. We therefore exclude the size
of C when computing the approximate idealised size of S.
For instance, the approximate idealised statement size of the
statement ~C V C, proved by appealing directly to the law of
excluded middle without using C-def, is 2.

More generally, for each constant ¢, we have a set of defining
equations. These are Isabelle facts which are the canonical
interpretation of c. In the case of simple definitions, this is just

the equation that was given when ¢ was defined (such as C-def).

To compute the idealised size of a statement S, we exclude all
the constants whose defining equations are never used in the
proof of S. This will always be an over-approximation of the

idealised size of S, but is at worst the original statement size.

This approximation of idealised statement size cannot be
a leading predictor of proof size, as it requires stage (3) of
the proof to be complete. However, it is useful when trying to
build an explanatory model for understanding the relationship
between statement size and proof size. The implications of
using this measure are discussed in Section VI

V. DATA COLLECTED

We applied our exploratory analysis to six projects: (1) four
top-level statements of the sel.4 verification work, and (2) two
proof developments in the Archive of Formal Proofs.

A. sel4 Project Proofs

The selL4 verification project [7] produced a formal,
machine-checked proof of the full functional correctness of the
seLL4 microkernel, down to the binary level, followed by proofs
of security properties about the kernel. seL4 is a small operating
system kernel, designed with explicit goals of high performance,
formal verification, and secure access control. It is comprised
of approximately 10,000 lines of C code. The proof of its
functional correctness shows that the binary correctly refines
its high-level abstract specification. This proof was done in
stages, with a proof that binary refines C, that C refines a design
representation, and finally that this design representation refines
the abstract specification. This last stage, called Refine, is our
first target proof. The binary verification is not suitable for this
analysis because it is not done in Isabelle [24]. The C to design
verification is not suitable for technical reasons: the translation
from C source to a semantic representation in Isabelle does not
create a constant dependency graph like one would expect. The
Refine proof builds on a proof, called Alnvs, expressing global
invariants satisfied by the abstract specification. This is the
second target of our study. The proof of functional correctness
was followed by a proof that seL4 enforces integrity [25] (called
Access) and confidentiality [26] (called InfoFlow). These are
the two remaining targets of our study. We present the main
characteristics of these four proofs below, taken from the public
release of the seL4 proofs [27]. The statements measured for
each proof development are all the dependencies of its top-
level statement, computed with respect to that development.
The statement sizes for these proofs are computed with respect
to the whole sel4 verification development, where the large
kernel specifications are defined.

Alnvs: this proof shows that a global invariant invs is preserved
by every possible execution of the abstract specification. The
top-level statement in this proof therefore depends on both the
abstract specification and invs. We measured 2,790 lemmas
from Alnvs, including the top-level statement with a raw size
of 1,292, ideal size of 949 and proof size of 32,214 lines
(measured as described in Section IV).

Refine: this is a refinement property, showing that the design
specification correctly refines the abstract specification. Its top-
level statement depends on these two specifications, in addition
a corresponding global invariant for each of them. Refine builds
on Alnvs, but we compute the proof sizes for Refine with respect
to itself. That is, proofs from Alnvs do not contribute to the
size of proofs from Refine. We measured 4,143 lemmas from
Refine, including the top-level statement with a raw size of
2,398, ideal size of 1,746 and proof size of 67,856 lines.

Access: this proof shows that sel.4 preserves the integrity of
components’ data according to a security policy p, i.e. it shows
that seL4 prevents unauthorised writes. Its top-level statement
depends on the abstract specification, the definition of integrity
as well as invs. Similar to Refine, we only measure Access
proofs with respect to itself, taking proofs from Refine and
Alnvs for granted. We measured 724 lemmas from Access,
including the top-level statement with a raw size of 1,395,
ideal size of 1,083 and proof size of 8,116 lines.

InfoFlow: this proof shows that sel.4 preserves the confidential-
ity of components’ data, i.e. seL4 prevents unauthorised reads.
Its top-level statement depends on the abstract specification, the



TABLE 1. R2 AND EQUATIONS FOR FIGURE 1 AND FIGURE 2
Proof Name | Size Used R2 Equa(tllon () :; ?+b : te
Alnvs raw 0.845 0.02579 -8.181 394.9

idealised 0.937 0.04325 -4.399 100.4
Refine _raw 0.724 0.01198 -5.355 519.1
idealised 0.799 0.01737 2.365 <2.2E-16
Access _ raw 0.735 0.0032 -1.112 86.45
idealised 0.889 0.006039 -0.915 57.36
InfoFlow raw 0.154 | -0.0003736 1.743 <2.2E-16
idealised 0.73 0.007893 -3.652 260.4
JinjaThreads raw 0.457 0.05631 -16.46 472.9
idealised 0.694 0.1166 -16.04 281
SATSolver raw 0.798 1.711 -65.43 375.7
Verification idealised 0.802 4.123 -77.52 223.7

definition of integrity, and invs. Additionally it includes a more
involved discussion of program execution traces. As previously
done, proof sizes from InfoFlow are measured with respect to
itself. We measured 1,665 lemmas from InfoFlow, including
the top-level statement with a raw size of 2,029, ideal size of
1,323 and proof size of 19,579 lines.

B. Proofs from the AFP

The Archive of Formal Proofs (AFP) [13] is a collection
of proofs in the theorem prover Isabelle, aimed at fostering the
development of formal proofs and providing a place for archiv-
ing proof developments to be referred to in publications. The
AFP counts over 100 entries. We investigated the two largest
software verification proofs from the AFP, JinjaThreads [28]
and SATSolverVerification [29].

JinjaThreads: Jinja is a Java-like programming language
formalised in Isabelle, with a formal semantics designed to
exhibit core features of the Java language architecture, and
formal proof of properties such as type safety and compiler
correctness. JinjaThreads extends this development with Java-
style arrays and threads, and shows preservation of the core
properties. We measured 5,215 lemmas from JinjaThreads,
including the top-level statement with a raw size of 579, ideal
size of 453 and proof size of 39,821 lines.

SATSolver Verification: this is a proof of correctness of modern
SAT solvers. We measure the proof with respect to the
Functionallmplementation theory, an implementation of a SAT
solver within Isabelle’s HOL. We measured 481 lemmas from
SATSolverVerification, including the top-level statement with a
raw size of 99, ideal size of 57 and proof size of 21,788 lines.

VI. RESULTS AND DISCUSSION

For each of the six projects analysed, we computed the
statement size and proof size of all of its lemmas, using the
measures described in Section IV. As explained, we used
two variants for the statement size: a raw measure and an
idealised measure, where the latter represents what the size of
the statement would be if stated in its most general form.

The results of the analysis are given in Figure 1 for
the raw measure and in Figure 2 for the idealised measure.
The analysis demonstrates a consistent quadratic relationship
between statement size and proof size across all the projects,
with a stronger relationship when using the idealised measure.
The respective R? and equations of the regression lines are
given in Table I. We now discuss the results in detail.

A. Results using the Raw Measure

For the first three results the regression for the raw size fits
the data nicely, as we can see in the plots and confirmed by the
R? results. However, even in Access some outliers can be seen
in the lower right corner of the graph. In InfoFlow this effect
is even stronger: a cluster of points with a large statement size
(~ 2,000) and a negligible proof size. This has the effect of
flattening the regression line and obfuscating the relationship.
After a thorough examination we determined that these are
statements that have been over-specified (see Section III-E),
resulting in a larger statement size than expected.

There likely exist many other over-specified lemmas, but
they have a less apparent effect on the overall shape of the graph.
The lemmas identified in this case were pathological: they
mentioned the entire abstract specification but were stating a
general property. The abstract specification is one of the largest
constants in this development, so including it in a statement
makes its size completely dominated by the size of the abstract
specification. All of the lemmas in Alnvs are similarly over-
specified, but more subtly so. Indeed the presence of this over-
specification was only made clear after performing the idealised
size analysis. This over-specification is a result of abstract
specification being extensible [30], embedding an optional
deterministic implementation of certain operations, which can
be used in place of non-deterministic ones when necessary.
However, no proof in Alnvs appeals to this deterministic
implementation. This is simply because, by design, the standard
invariants do not discuss the program state required to resolve
this determinism. As a result, these deterministic operations
unnecessarily inflate the statement size as measured in Alnvs.

B. Effectiveness of the Idealised Measure

The idealised size, introduced in Section III-E, is meant
to capture the idea that redundant constants do not contribute
to the difficulty of a proof. Analysis using the idealised size
(shown in Figure 2 and Table I) show improved results across
all projects. In particular, the InfoFlow results are now much
more aligned and consistent with the others. R? now varies
from 0.694 to 0.937. We can also see from the graphs that
all of the statement sizes shrunk, reflecting the fact that the
idealised size is always smaller or equal to the raw size.

We made no attempt to investigate the outliers in the proofs
from the AFP, simply because we do not know their proofs
well enough to perform the same level of analysis. Despite this,
applying the idealised size measure had significant improvement
on the clarity of the data in JinjaThreads, with a lesser effect
in SATSolverVerification, which was already quite clear.

Previously [8] we showed a linear relationship between the
size of formal specifications (as measured in source lines of
Isabelle) and the number of lines of source code. Although not
measured, we argue that the specification size (as described
in Section III-D) will scale linearly with source lines. Combined
with the result above, this indicates a quadratic relationship
between code size, property size, and eventual proof size. This
confirms our intuition based on our experience developing the
seL4 proofs: the correctness of each property depends on its
interaction with the entire program, resulting in the observed
quadratic relationship. Despite this intuition, and the apparent
shape of the data, we investigated other regressions in the
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course of this study. Specifically we performed linear, cubic
and exponential regressions against the measured proof size and
ideal/raw specification sizes. Linear and exponential regressions
were less compelling than quadratic, with extremely low R?
values and clearly not fitting the data. A cubic regression yielded
a marginal increase in R2, but with an extremely small leading
coefficient, indicating that the relationship is indeed quadratic.

Overall, our measures of statement size, while primitive,
are a promising leading indicator of proof size, with a quadratic
correlation that is strengthened with the idealised measure.

C. Limitations

More work can still be done to refine the measures, tune
them to specific application areas, and further analyse outliers.
In particular, a set of outliers that can be seen on the graphs
is the data points with very low proof size for large statement
size, visible for instance in the graph for InfoFlow in Figure 1
and Figure 2 as the points that drag down the regression line.
These points are a result of proof reuse: they correspond to
statements proved largely by just using facts from Access; the
size of these Access facts is not counted since they come from
a development already in existence when starting the InfoFlow
proofs (see Section III-C). This re-use could be captured by
better measures, as discussed in Section VIII.

Although the relationship between proof and statement
is consistently quadratic across the proof developments we
analyzed, it is important to note that it is not yet necessarily
predictive. It is not clear how to take a model from one proof
and use it to predict proof sizes in another. The seL4 proofs all
have quadratic coefficients within the same order of magnitude,
indicating some potential for an overall model for seL4-style
proofs. However the AFP results are quite different: The largest
statements in JinjaThreads and SATSolverVerification have raw
sizes of 579 and 99 respectively, which are both an order of
magnitude smaller than any top-level statement in sel.4. Their
proof sizes, however, are comparable to that of Refine and Alnvs.
Without an in-depth analysis of these proofs it is difficult to
confidently say what causes this discrepancy.

D. Other Measures

The measure for statement size was chosen based on its
simplicity and because it was clear how an idealisation could
be applied in order to address over-specified lemma statements.
In the course of this work we investigated many other measures
which attempted to capture our intuition about what makes
a statement difficult to prove. For example, we gave extra
weight to recursive functions with even greater weighting for
mutual recursion, to capture the intuition that inductive proofs
are inherently difficult. In practice however, none of these
measures correlated better than the naive one. There is still
significant room for exploration in this area, and in Section VIII
we discuss measures which might yield a predictive model.

VII. THREATS TO VALIDITY

Our results show a strong internal consistency amongst
the projects analysed, whose validity is strengthened by two
factors. Firstly the analysis of the data collected has been set-up
by one individual and re-run, refined and checked by another.
Secondly, the derivation of measures has been mechanised and

fully automated using a custom tool, ProofCount [27]. Given
the size of the data set, manual counting would have been
impossible. ProofCount gives us the guarantee of determinism
and ease of use on any formal proof in the same language.
However, it is quite intricate and could still contain errors.

A threat to internal validity is the simplifying assumption
made in Section III that proofs proceed in three neat phases:
(1) definition writing, (2) lemma statement writing, and
(3) proof writing. In practice, these phases tend to be iterated
to varying degrees. For instance, during phase (3) one often
finds a lemma unprovable, meaning that definitions and lemma
statements written earlier need further refinement and existing
proofs written may need to be updated. The noise introduced by
this iteration would need to be taken into account when building
an estimation model based on the results from this paper, and
is inherent when using results obtained from finished proofs
(which have already undergone the iteration mentioned above).
Any such predictive model will therefore require experimental
validation on new proofs, by running it at the beginning of
phase (3) and comparing its predictions to the actual results
obtained at the end of the proof.

An additional threat to internal validity is the justification
of our idealised measure for statement size, as a refinement
of raw statement size. This measure is shown to have stronger
relationship to proof size across all projects. The threat comes
from the fact that we use information from the proof to
identify overly-specific statements. This makes the application
of idealised size as a leading measure less straightforward. In
practice however, when attempting to estimate the eventual size
of the proof of a statement, we would apply domain-specific
knowledge to manually identify which parts might be over-
specified. In most cases the worst causes of over-specification
are readily apparent, but require human intuition to identify.
The idealised size, as we computed, is an automated substitute
for the application of this intuition. With some manual effort,
applying the expertise of the proof engineer to identify cases
of over-specification, an approximation of idealised size can be
made without requiring a finished proof. This approximation
could therefore be applicable as a leading measure.

Threats to external validity include the ability to generalize
the results to other verification projects, other project settings
(e.g. team size), and other interactive theorem provers. In order
to address the first two threats, we have applied our approach
to three completely separate verification projects, including
two independent open-source projects from the AFP. Results
show that our raw measure for statement size does not have
high correlation to proof size for JinjaThreads. However, our
idealised measure does have a strong quadratic relationship
in both AFP proofs, consistent with the results for the sel.4
verification project. Application to additional projects from the
AFP could also provide further data points, however we are
most interested in projects with large top-level statements, as
is seen in formal software verification. The largest proof in
the AFP, apart from JinjaThreads, only has a top-level proof
size which is comparable to the smallest proof development
we examined.

The last threat, that of having applied our approach to
only one interactive theorem prover, namely Isabelle, has
been partially addressed by choosing measures whose general
principles are prover-agnostic (e.g. number of constants, number



of proof lines) and that have equivalents in other popular
theorem provers such as Coq. However, a notable difference
between Coq and Isabelle is Coq’s native support for easily
writing tactics [31] (proof procedures). In Isabelle most proofs
appeal solely to built-in automation, with only recent work [32]
aiming to make writing custom automation more accessible.
Investigating the effect of using custom proof tools on the
observed relationship is planned future work.

To summarise, the generalisation to other settings is yet
to be investigated but the approach has been designed to be
generalisable and initial steps have been taken to validate it on
different types of projects.

VIII. FUTURE WORK

Although we have only presented simple measures in
this paper, we have a large degree of freedom in this area.
Previously [11] we chose to measure proof size as lines of
proof because it correlated well with effort, but only at the
granularity of entire proof developments. A more in-depth
analysis could establish a relationship between some size
measure and effort for individual lemmas. For instance, we
might try to incorporate some semantic information from proofs
to calculate their size. The source text of a proof describes
invocations to automated reasoning tools, which eventually
must appeal to primitive inference rules. These appeals can be
stored as a formal representation of the proof, often called a
proof term [22], [33]. A naive size measure of a proof term
is unlikely to be indicative of the effort required to create it.
For example, a single invocation of a first-order prover might
produce a large proof term, but would be a trivial exercise from
the perspective of a proof engineer. Despite this, we anticipate
that it would be possible to incorporate more semantic proof
information in proof size measurement.

Grov et al. suggest that high-level proof strategies could
be extracted from finished proofs, using statistical relational
learning [34]. This was realised as ML4PG [35], an extension
to Proof General [36], which gathers on-line statistics during
the development of Coq proofs and uses machine learning to
provide hints when writing subsequent proofs. They extract
proof features such as goal shape at intermediate proof points as
well as which automated tools were applied. A similar analysis
could be done to more precisely measure effort for individual
proofs and provide a more accurate measure of proof size.

It is difficult to pick a good single measure of statement
size given their complexity. In general we could compute a
feature vector which captures more fine-grained information
from statements. One feature could be statement size as
measured in this paper. Other features could include domain-
specific information, such as the size of function and invariant
statements separately, or the cyclomatic complexity of the
programs. We could also attempt to capture information from
previously finished proof developments that we build on. For
example, as a feature of a statement, we might compute some
measure of its similarity to statements of existing lemmas. This
would allow us to anticipate the degree of proof re-use (as
mentioned in Section VI-C) that would potentially appear in
its proof. The set of features chosen would dictate the class of
proofs for which such an analysis is meaningful (e.g. program
verification). We hypothesise that well-chosen feature vectors

would be robust against the fluctuations in statement design
style that we see e.g. between sel.4 and JinjaThreads.

Although our analysis did not result in a universal predictive
model for eventual proof size, it does indicate the potential for
iteratively building a project-specific model due to the strong
correlation within a given proof development. The model could
be updated as proofs are completed and the precise relationship
between proof and specification size is better understood.

IX. CONCLUSION

In this paper we investigated the relationship between the
size of formal statements and corresponding formal proofs in
an interactive theorem prover. Our increasing trust on critical
software systems has created a demand for software which is
trustworthy. Formal software verification is the application of
formal proof to guarantee the correctness of software behaviour.
However, the cost of formal verification is not well understood
due to the relatively low number of successful large-scale
applications. The ability to accurately predict this cost is crucial
to the wide-spread application of formal methods. In earlier
work [11] we established a linear relationship between proof
size and proof effort. Expanding on this, we sought leading
indicators of proof size and thus turned to statement size.

We have established two measures for statement size, raw
and idealised, and use them in an analysis of six Isabelle
proof developments. Raw size is the number of unique
constants required to write a statement, recursively including all
dependencies. This measure was shown to be highly susceptible
to over-specified statements having inflated sizes. This prompted
the introduction of idealised size, a refinement of raw size,
which removes redundant constants in order to reduce the
impact of over-specified statements. In total we examined the
size of 15,018 statements and compared them against their
proof size.

Our analysis shows a quadratic relationship between state-
ment and proof size, and that our idealised measure strengthens
this correlation. However, the investigation did not yield a
predictive model as the precise relationship changes between
proofs. Combined with previous work [11], we believe this is
an important step in establishing a leading indicator for the
effort and cost required to perform formal verification.
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