
Short Paper: On High-Assurance
Information-Flow-Secure Programming Languages

Toby Murray
NICTA and the University of New South Wales

Sydney, Australia
toby.murray@nicta.com.au

ABSTRACT
We argue that high-assurance systems require high-assurance
information-flow-secure programming languages. As a step to-
wards such languages, we present the, to our knowledge, first con-
current theory of information flow security that supports (1) com-
positional reasoning under dynamic assumptions, and (2) value-
dependent classification, to handle the dynamism inherent in mod-
ern high-assurance systems. We sketch out our vision and a
roadmap for building self-certifying information-flow-secure pro-
gramming languages.

Categories and Subject Descriptors
D.2.0 [Software Engineering]: General—Protection mechanisms;
D.2.4 [Software Engineering]: Software/Program Verification;
D.3.2 [Programming Languages]: Language Classifications—
Specialized application languages

General Terms
Languages, Security, Theory, Verification

1. INTRODUCTION
Information flow security has remained an active topic of re-

search since the seminal work of Denning [1976] and Goguen
and Meseguer [1982]. Much of this early work sought to de-
velop theories for proving the absence of unwanted information
leakage in high-assurance systems, like those that process clas-
sified data. Decades later, these systems are more prevalent and
no less security-critical. Despite facing greater security threats,
modern security-critical systems are rarely formally proved to be
information-flow secure, not least because doing so remains fairly
expensive [Murray et al. 2013].

Meanwhile, of all the information flow security research,
information-flow-secure programming languages like Jif [Myers
1999], JSFlow [Hedin et al. 2014] and Paragon [Broberg et al.
2013], have arguably emerged as the best vehicles for putting secu-
rity theory [Sabelfeld and Myers 2003] into the hands of program-
mers for constructing secure systems [Chong et al. 2007; Clarkson

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PLAS’15 July 06 2015, Prague, Czech Republic
Copyright is held by the owner/author(s).
ACM 978-1-4503-3661-1/15/07...$15.00
DOI: http://dx.doi.org/10.1145/2786558.2786561 .

et al. 2008]. They allow programmers to express information flow
guarantees that are then enforced by the compiler through some
combination of static and dynamic checks. Importantly, the pro-
grammer need not understand how the checks work, nor why they
are sound, so long as the compiler is trusted.

Thus one way to build high-assurance systems, with formally
verified security at reasonable cost, might be to use information-
flow-secure programming languages. However, current languages
are ill-suited to high-assurance systems because each has an overly
large trusted computing base (TCB). For instance, Jif and Paragon
rely on Java, so their TCB includes not only their compiler but also
the Java TCB — which in 2002 comprised anywhere upwards of
50,000 to 230,000 lines of unverified code [Appel and Wang 2002].

We argue that high-assurance systems demand high-assurance
information-flow-secure programming languages. The compiler
for such a language should not have to be trusted. Instead, the
output it produces should be automatically formally certified as be-
ing secure. Recognising that security is the overriding concern for
these systems, such a language can also eschew general-purpose
language features to reduce the size of its TCB, and simplify the
job of certifying its compiler-produced output [Keller et al. 2013].

Such languages must also be able to handle the concurrency
and dynamism of modern high-assurance systems. Consider a
dual-personality smartphone whose classified personality allows
the user to send and receive classified information that the phone
guarantees will never be observable outside this personality. The
classification of the input that the user types into the phone thus
changes dynamically, depending on which personality is active.
The input driver component, which receives user input and runs
concurrently to the two phone personalities, is required to copy in-
coming input to (only) the currently active personality. We need
languages that allow the programmer to naturally express this kind
of dynamic policy and enforce a suitably dynamic, concurrent no-
tion of information-flow security. Additionally, if the compiler out-
put is to be automatically formally certified, then the language re-
quires a compositional theory of information flow security to allow
each concurrent component to be certified independently; other-
wise, it won’t scale.

As a first step towards this vision, we present the first com-
positional theory of concurrent, value-dependent information flow
security, able to accommodate this kind of dynamism. This the-
ory lays the foundation for the development of self-certifying
high-assurance information-flow-secure programming languages,
for which we provide a roadmap.

2. A MOTIVATING EXAMPLE
To motivate our new compositional theory of information flow

security, consider the pseudocode in Figure 1. It is a fragment of

http://dx.doi.org/10.1145/2786558.2786561

a simplified input driver component, inspired by the example of
Section 1. It reads input, from a variable input, and copies it
via the temp variable to one of two input buffer variables, low
and high, depending on which personality is active, stored in the
cur_pers variable.

The input variable is updated by some other concurrently run-
ning component whenever new input is available; likewise, the
cur_pers variable is updated when the user switches between
the two system personalities.

Here, the classification of the data held by the input variable
varies dynamically. At any point in time, its classification is de-
termined by the cur_pers variable: input is classified Low iff
cur_pers is zero, and is High otherwise. Thus input’s classi-
fication is value-dependent [Zheng and Myers 2007; Lourenço and
Caires 2015].

The comments encode assumptions that this code makes to be
correct. It assumes that no other component can modify the input
variable, nor modify or read the temp variable that temporarily
holds the input (and does so before the classification of the input
variable is learned). The assumption that other components won’t
modify input while this code is running implies also that they
won’t change input’s classification by modifying cur_pers.
The assumption that temp is not read by other components means
it is safe to be classified Low always [Mantel et al. 2011]. In prac-
tice, these assumptions would be enforced using appropriate con-
currency control primitives, like locks.

1 // assume: NoWrite input
2 // assume: NoReadOrWrite temp
3 temp = input;
4 if (cur_pers == 0)
5 low = temp;
6 else
7 high = temp;
8 temp = 0; // clear temp

Figure 1: A snippet of a dynamic input driver component.

3. COMPOSITIONAL VALUE-DEPENDENT
INFORMATION FLOW SECURITY

We require a theory of information flow security that supports
concurrency via compositional reasoning, to allow each component
to be automatically proved secure independently, under (dynamic)
assumptions they make about the behaviour of other components,
while supporting value-dependent classification. To construct a
prototype theory, we extended the theory of Mantel et al. [2011],
which provides for compositional reasoning with assumptions, to
incorporate a notion of value-dependent classification.

To our knowledge, this is the first such theory that incorpo-
rates all of these elements. Previous value-dependent theories
(e.g. [Zheng and Myers 2007; Lourenço and Caires 2015]) are not
concurrent, or (e.g. [Murray et al. 2012]) don’t support composi-
tional reasoning.

To extend the theory of Mantel et al. [2011] to include value-
dependent classification, we draw on ideas from Murray et al.
[2012] who extended the noninfluence theory of von Oheimb
[2004] to allow the classification of actions to be state-dependent.
This was achieved by (1) carefully delineating the part of the state
on which dynamic classifications depended, and (2) ensuring that
this state was always classified at the lowest level (i.e. was public
knowledge). Thus in a secure system the state that determines the

dynamic classifications can never be influenced by confidential in-
formation, and thus dynamic changes to classifications cannot form
a covert channel. We reuse these same ideas.

Our theory is formalised and its central compositionality the-
orem proved in the Isabelle/HOL proof assistant [Nipkow et al.
2002], by modifying the existing formalisation by Grewe et al.
[2014] of the theory of Mantel et al. [2011].

3.1 Preliminaries
Memory is modelled as a mapping from a finite set of variables

(memory addresses) to values. As is usual, we restrict our atten-
tion to a two-point lattice of security classifications High and Low,
where Low < High. Let Lmem v give the classification of vari-
able v when the memory is mem. L is parameterised by mem to
accommodate variables whose classification depends on the values
of other variables, like input in Figure 1. Let Cvars v denote the
(fixed) set of variables that variable v’s classification depends on,
such that:
(∀ x∈Cvars v. mem1 x = mem2 x) −→Lmem1 v = Lmem2 v

Let C ≡
⋃

x Cvars x denote the set of control variables, i.e. those
that determine the classification of all other variables. Then we
require that these variables are always classified Low: ∀ x∈C.Lmem
x = Low and ∀ x∈C. Cvars x = ∅.

In the example of Figure 1, Cvars input= {cur_pers}, and
Cvars v = ∅ for all other variables v. The requirement then that
cur_pers is always classified Low simply encodes the necessary
assumption that the user’s choices about which personality is cur-
rently active do not themselves leak High information (i.e. that the
user isn’t an unwitting covert channel). Regardless of whether this
assumption is valid in practice, the system is insecure without it.

Following [Mantel et al. 2011], we assume a deterministic pro-
gramming language in which each concurrently executing compo-
nent is written. Let 〈cmd, mds, mem〉 denote a local configura-
tion of an individual component where cmd is the currently execut-
ing command; mds is the current modes state for that component,
which we describe shortly; and mem is the current memory. Let
; denote a transition relation on local configurations that gives the
small step operational semantics for the language.

The mode state tracks the current assumptions of an individ-
ual component, as well as guarantees made by that component.
These guarantees are needed to satisfy the assumptions of other
components, in order for the proofs of the individual compo-
nents to compose, via assume-guarantee-style reasoning [Jones
1981]. Let AsmNoWrite, AsmNoReadOrWrite, GuarNoWrite,
and GuarNoReadOrWrite denote four (not mutually exclusive)
modes that a component may dynamically associate with each vari-
able. When a component associates the AsmNoWrite mode with
a variable v, the component assumes that no other component will
modify v or its classification (by modifying its Cvars). The Asm-
NoReadOrWrite mode assumes additionally that the variable and
its Cvars (i.e. its classification) will not be read. When a compo-
nent associates GuarNoWrite with variable v, it is guaranteeing
not to modify v nor its classification; GuarNoReadOrWrite addi-
tionally guarantees that v and its Cvars will not be read.

The mode state is a mapping from each mode to the set of
variables that currently have that mode. Thus variable v has
e.g. mode AsmNoWrite in mode state mds when v ∈ mds Asm-
NoWrite. The mode state acts as ghost state, enriching the lan-
guage semantics with sufficient information to allow compositional
reasoning; however this information does not affect memory con-
tents. In the example of Figure 1, the two comments are annotations
that update the mode state by associating input and temp with
the modes AsmNoWrite and AsmNoReadOrWrite respectively.

AsmNoReadOrWrite and GuarNoReadOrWrite are a slight
departure from Mantel et al. [2011] who have instead an assump-
tion and guarantee that forbids reading a variable while allowing
it to be modified. In our experience, this situation doesn’t tend to
arise in practice; however, accommodating it is a significant source
of complexity in Grewe et al. [2014]. Our change simplifies the
theory without a practical loss of applicability, allowing us to con-
centrate on the new aspects of value-dependent classification.

A global configuration models the global state of the sys-
tem that comprises a collection of concurrently running compo-
nents. It is a pair: (cms, mem) where cms is a list of com-
mand/mode state pairs (cmdi, mdsi), one for each of the con-
currently executing components, and mem is the memory (which
they all share). ;- is the transition relation on global configura-
tions. (cms, mem);i (cms ′, mem ′) denotes that the system transi-
tions from global configuration (cms, mem) to configuration (cms ′,
mem ′) by the ith component making an execution step. It is defined
as follows.

cms[i] = (cmdi, mdsi)
i < |cms| 〈cmdi, mdsi, mem〉; 〈cmdi

′, mdsi ′, mem ′〉
(cms, mem);i (cms[i := (cmdi

′, mdsi ′)], mem ′)

For a list cms, cms[i] denotes its ith element (indexed
from 0), and |cms| denotes its length. The expression
cms[i := (cmdi

′, mdsi ′)] updates the list cms at the ith position
with (cmdi

′, mdsi ′).
We abstract away from any particular scheduling policy or im-

plementation by defining execution against arbitrary schedules as
follows. A schedule sched is a finite list of natural numbers, pre-
scribing the order in which components are to execute. Execution
against sched is denoted →sched, which is a transition relation on
global configurations defined recursively in the natural way.

c→[] c ′= (c = c ′) c→n · ns c ′= (∃ c ′′. c ;n c ′′∧ c ′′→ns c ′)

Here [] is the empty list and n · ns is the list whose head is n and
whose tail is the list ns.

3.2 Security
We now define the main security properties. They naturally par-

allel the original definitions of Mantel et al. [2011], wherein there is
a global system-wide security property, and a local security prop-
erty for each component. These are linked by a central composi-
tionality theorem which states that if the local property holds for
each component, then the global property holds for the entire sys-
tem, assuming some side conditions to allow the local properties to
compose via assume-guarantee style reasoning [Jones 1981].

Global Security.
Let mem1 =

l mem2 denote when the memories mem1 and mem2

are Low-equivalent:

mem1 =l mem2 ≡ ∀ x. Lmem1 x = Low −→ mem1 x = mem2 x

Because all C variables are Low, it follows straightforwardly that:
mem1 =l mem2 −→ (∀ x. Lmem1 x = Lmem2 x).

Let mds0 denote the initial mode state: mds0 m = ∅. For a
list cmds = [cmd1, . . . , cmdn] of commands, let init cmds be the
list: [(cmd1, mds0), . . . , (cmdn, mds0)]. For a list x let set x
denote the set containing just x’s elements.

Finally, let sys-secure cmds be the global security property
that denotes when the collection of concurrently executing com-
ponents cmds is secure:

sys-secure cmds ≡
∀mem1 mem2.

mem1 =l mem2 −→
(∀ sched cms1 ′mem1

′.
(init cmds, mem1)→sched (cms1 ′, mem1

′) −→
(∃ cms2 ′mem2

′. (init cmds, mem2)→sched (cms2 ′, mem2
′)) ∧

(∀ cms2 ′mem2
′.

(init cmds, mem2)→sched (cms2 ′, mem2
′) −→

modes-eq cms1 ′ cms2 ′∧
(∀ x. x ∈ C ∨ Lmem1

′ x = Low ∧ readable cms1 ′ x −→
mem1

′ x = mem2
′ x)))

Here modes-eq cms1 ′ cms2 ′ denotes that the two lists cms1 ′

and cms2 ′ agree pointwise on their mode states; readable cms1 ′

x ≡ ∀ (cmd ′, mds ′)∈set cms1 ′. x /∈ mds ′AsmNoReadOrWrite.
sys-secure cmds asserts that given two initial memories that are

Low-equivalent and executing an arbitrary schedule from the first,
this execution can always be matched by running the same sched-
ule from the second: in all cases, the two resulting configurations
will have the same mode states for each component, and will agree
for all control variables (which determine the classification of all
others), as well as all Low variables that no component is assum-
ing will not be read — i.e. the two configurations will agree on the
values of those variables that must hold Low data.

By quantifying over schedules sched, our global security prop-
erty effectively assumes that the operation of the system scheduler
is determined by a static schedule that is public knowledge. The
same assumption is made for instance in the seL4 information flow
security proof [Murray et al. 2013]. Note that this quantification
over schedules is not present in the original property of Mantel et al.
[2011] and makes our global security property slightly stronger.

Local Security.
The local security property essentially requires showing that

each component preserves the following relational property, called
Low-equivalent modulo modes:

mem1 =mds
l mem2 ≡

∀ x. x ∈ C ∨
Lmem1 x = Low ∧ x /∈ mds AsmNoReadOrWrite −→
mem1 x = mem2 x

It requires that each component ensures that all C-variables and all
Low variables that the component assumes may be read by other
components, always contain only Low information. Note that:
mem1 =mds

l mem2 −→ (∀ x. Lmem1 x = Lmem2 x).
To prove that each component maintains this equivalence, we

require that for each a relation R can be found that relates two
executions of the component and ensures that the Low-equivalence
modulo modes is always preserved. Following Mantel et al. [2011],
R is called a strong low bisimulation modulo modes and is defined
formally as follows.

We require that R is preserved by the actions of the other com-
ponents in the system, restricted according to the assumptions en-
coded in the current mode state mds. In this case we say that R is
closed under globally consistent changes, denoted closed-gcR.

closed-gcR≡
∀ c1 mds mem1 c2 mem2.
〈c1, mds, mem1〉 R 〈c2, mds, mem2〉 −→
(∀A. (∀ x. mem1 x 6= mem1 [‖1 A] x ∨

mem2 x 6= mem2 [‖2 A] x −→
writable mds x) ∧

(∀ x. Lmem1 x 6= Lmem1 [‖1 A] x −→
writable mds x) ∧

mem1 [‖1 A] =mds
l mem2 [‖2 A] −→

〈c1, mds, mem1 [‖1 A]〉 R 〈c2, mds, mem2 [‖2 A]〉)

closed-gc R quantifies over the actions A of other components
in the system. An action A models the memory-updates performed
by other components and so is a partial mapping from variables to
pairs of values (one for each of the memories in the two configura-
tions). We write mem [‖1 A] to denote updating the memory mem
with the first set of changes in A, and mem [‖2 A] for updating mem
with the second set. We restrict A to only modify the values or clas-
sifications of variables x that are assumed to be writable: writable
mds x ≡ x /∈ mds AsmNoWrite ∧ x /∈ mds AsmNoReadOrWrite.
We also restrict it to preserving Low-equivalence modulo modes,
assuming that all other components behave securely.

We phrase closed-gc in terms of actions A that may modify
more than one variable at a time, in contrast to Mantel et al. [2011]
who consider only individual variable updates, because we need to
take into account how updates to C-variables interact with updates
to ordinary variables.

Let strong-low-bisim-mm R denote that R is a strong low
bisimulation modulo modes [Mantel et al. 2011]:

strong-low-bisim-mmR≡
(symR ∧ closed-gcR) ∧
(∀ c1 mds mem1 c2 mem2.
〈c1, mds, mem1〉 R 〈c2, mds, mem2〉 −→
mem1 =mds

l mem2 ∧
(∀ c1 ′mds ′mem1

′.
〈c1, mds, mem1〉; 〈c1 ′, mds ′, mem1

′〉 −→
(∃ c2 ′mem2

′.
〈c2, mds, mem2〉; 〈c2 ′, mds ′, mem2

′〉 ∧
〈c1 ′, mds ′, mem1

′〉 R 〈c2 ′, mds ′, mem2
′〉)))

R must be symmetric, closed under globally consistent changes,
and imply Low-equivalence modulo modes, as well as being pre-
served locally by the component.
Then two commands cmd1 and cmd2 are Low-indistinguishable
under modes mds, denoted cmd1 ∼mds cmd2 when:

cmd1 ∼mds cmd2 ≡
∀mem1 mem2.

mem1 =mds
l mem2 −→

(∃R. strong-low-bisim-mmR ∧
〈cmd1, mds, mem1〉 R 〈cmd2, mds, mem2〉)

Finally let com-secure cmd be the local security property that
denotes when a single component whose program is cmd is se-
cure [Mantel et al. 2011], namely when it is Low-indistinguishable
to itself under the initial mode state mds0:

com-secure cmd ≡ cmd ∼mds0 cmd

Note that, via the compositionality theorem presented shortly,
this local security property can be viewed as a proof technique for
the global security property sys-secure. Thus we, following Man-
tel et al. [2011] and many others, effectively use bisimulation as a
proof technique for global security.

3.3 Compositionality
The compositionality theorem parallels Mantel et al. [2011]:

COMPOSITION:

∀ cmd∈set cmds. com-secure cmd
∀mem. sound-mode-use (init cmds, mem)

sys-secure cmds

For the local security properties to compose, this theorem requires
that each component always meets the assumptions of all oth-
ers: ∀mem. sound-mode-use (init cmds, mem).

sound-mode-use parallels the original [Mantel et al. 2011], so
we discuss it only briefly. It essentially requires that each compo-
nent (1) guarantees to meet the assumptions of all others and (2) al-
ways adheres to its own guarantees. (1) requires that whenever

a component has an AsmNoReadOrWrite (respectively Asm-
NoWrite) assumption for a variable v, that all other components
have GuarNoReadOrWrite (resp. GuarNoWrite) for v. (2) re-
quires that whenever a component whose current command is cmd
has the GuarNoReadOrWrite (resp. GuarNoWrite) guarantee
for variable v, then condition doesnt-read-or-write cmd v (resp.
doesnt-write cmd v) holds.1

doesnt-read-or-write cmd v ≡
∀mds mem c ′mds ′mem ′.
〈cmd, mds, mem〉; 〈c ′, mds ′, mem ′〉 −→
(∀ v ′∈{v} ∪ Cvars v.
∀ x. 〈cmd, mds, mem(v ′ := x)〉; 〈c ′, mds ′, mem ′(v ′ := x)〉)

doesnt-write cmd v ≡
∀mds mem cmd ′mds ′mem ′.
〈cmd, mds, mem〉; 〈cmd ′, mds ′, mem ′〉 −→
mem v = mem ′ v ∧ Lmem v = Lmem ′ v

(2) asserts this requirement for all locally reachable configura-
tions of a component, which are all local configurations reachable
through (; ∪;other)

∗ where ;other captures the steps of other
components and is defined inductively as:

∀ x. ¬ writable mds x −→ mem x = mem ′ x ∧ Lmem x = Lmem ′ x

〈c, mds, mem〉;other 〈c, mds, mem ′〉

COMPOSITION Proof.
The proof of the compositionality theorem parallels the origi-

nal, and involves establishing a relational invariant that posits the
existence of a set of hypothetical memories (one for each compo-
nent) that agree with the actual memories except for non-C vari-
ables that are Low and assumed will not be read; it is these hy-
pothetical memories that the invariant asserts are Low-equivalent
modulo modes. To complete the proof, some care is needed to con-
struct the hypothetical memories appropriately in light of potential
changes to C variables. The requirement that the AsmNoWrite
assumption also prevent modifying a variable’s classification (and
similarly for AsmNoReadOrWrite and reading) assists the proof,
as well as making systems easier to program as illustrated in Fig-
ure 1.

4. THE ROAD TO HIGH-ASSURANCE
INFORMATION-FLOW-SECURE
LANGUAGES

We argue that the time of high-assurance information-flow-
secure programming languages has arrived. Specifically, recent
advances in verification technology and theory mean that we are
now at the point where self-certifying high-assurance languages are
within reach. We sketch out what such a language might look like,
and how to build it.

High-Assurance Secure Languages.
The compiler for a high-assurance language for programming se-

cure systems should do two things. Firstly, it should automatically
prove that the system’s source code is secure. Secondly, it should
certify that the compiler-produced output correctly implements the
source code semantics. When the security property being proved
1Note that while the definition of doesnt-read-or-write cmd v
considers individual variables in {v} ∪ Cvars v, it is equivalent
to one that considers arbitrary subsets of {v} ∪ Cvars v.

is preserved by refinement, this ensures that the compiler-produced
output is also secure.

Traditionally [Sabelfeld and Myers 2003], information flow se-
curity type systems have been used to automatically establish in-
formation flow security at the source code semantics. The vast
majority of existing information-flow-secure languages have a type
soundness theorem, which proves that well-typed programs are in-
formation flow secure, formalised for an ideal core of the language.
However, the compiler for a high-assurance information flow se-
cure language should produce a proof of well-typedness for the in-
put program, checked by a trustworthy proof assistant like Isabelle
or Coq.

With the advent of CompCert [Leroy 2009], the certified C com-
piler, compilers that can certify their own output have become a
recent reality. A high-assurance language should do no less, in or-
der to remove the compiler from the TCB.

We argue that both of these tasks are feasible, and that they can
be combined to produce a self-certifying information-flow-secure
programming language. Further, if these proofs are then composed
with those of a verified kernel on which the compiled code is de-
ployed, the resulting proof chain offers the hope of truly end-to-end
proofs of security, all the way from the source code, down through
its compiled implementation and the kernel on which it runs.

Source Code Proofs of Security.
The theory presented in Section 3 allows a system to be proved

secure, in terms of its source code semantics, one-component-at-a-
time, under assumptions made by each component about the others.

We argue that the necessary ingredients now exist for building
an appropriate security type system for this theory. Such a type
system needs to make use of each component’s assumptions when
proving well-typedness of that component. However, it also needs
to be able to handle value-dependent classification. When present-
ing their original theory that we extended in Section 3, Mantel et al.
[2011] presented a flow-sensitive type system for proving the secu-
rity of individual components while making use of assumptions.
Lourenço and Caires [2015] recently presented a general theory of
dependent security types. It remains to be seen how to reconcile
the two, and produce a certifying type checker.

Proofs of Implementation Correctness.
While certified compilers like CompCert are now a reality, they

remain very expensive to develop. Keller et al. [2013] argue that
building a language with a self-certifying compiler is simplified by
having the language eschew general-purpose facilities, which are
instead provided by application-specific abstract data types imple-
mented and verified outside of the language.

Existing work on certified compilers covers non-concurrent
code. Extending it to concurrent systems requires a compositional
refinement theory for proving that the compiled code correctly im-
plements the source code semantics one-component-at-a-time. Ide-
ally, this theory should reuse the assumptions used in the composi-
tional security proofs of each component. Liang et al. [2014] devel-
oped a compositional refinement theory able to make use of general
assumptions made by each component, which are guaranteed by the
others. It remains to be seen whether this form of assume-guarantee
reasoning [Jones 1981] can be reconciled with that supported by
our theory from Section 3, inherited from Mantel et al. [2011].

Security Proofs of Compiler-Produced Implementa-
tions.

Combining the hypothetical compiler-produced proofs of source
code security and implementation correctness, to prove that the

compiled system is information flow secure, requires the security
properties to be preserved by refinement. Many traditional ones are
not, a result known as the refinement paradox [Jacob 1988].

Because our theory of Section 3 assumes a deterministic pro-
gramming language, the refinement paradox should not trouble in-
dividual components. However, the implicit model of the sched-
uler in that theory, which allows any component to be scheduled
at any time, is nondeterministic. In practice, the system scheduler
implements some refinement of this behaviour. Like the original
of Mantel et al. [2011], our global security property sys-secure is
not preserved by refinement. Thus a system might be judged secure
by sys-secure but when it is executed on a particular scheduler it
may in fact be insecure.

This problem has been studied heavily, with one popular tech-
nique to address it being to define security properties that are sched-
uler independent [Sabelfeld and Sands 2000], meaning that they
are preserved by any scheduler from a particular class. Sudbrock
[2013] extended the theory of Mantel et al. [2011] to cover certain
schedulers, so ours should be able to be extended likewise. Fur-
thermore, by building on formally verified kernels like seL4 [Klein
et al. 2014] we can also prove that actual schedulers on which a
high-assurance language would be deployed meet the assumptions
of the scheduler independence notion.

Deployment on a Verified Kernel.
Finally, the aforementioned theories should be able to be com-

bined with those of a verified kernel, like seL4, beyond just rea-
soning about the scheduler. Specifically, the implementation cor-
rectness proofs will make certain assumptions about the underlying
kernel on which the compiled code runs, including about the be-
haviour of system calls invoked by the compiled code, and that each
component is correctly isolated from the others2. Both can be dis-
charged by deploying on a verified kernel like seL4. seL4’s func-
tional correctness proofs [Klein et al. 2009] give system calls a pre-
cise, yet manageable, semantics; its security theorems, which cover
both data integrity [Sewell et al. 2011] and confidentially [Murray
et al. 2013], are ideal for discharging isolation assumptions.

A high-assurance information-flow-secure programming lan-
guage with a self-certifying compiler, combined with a verified
kernel like seL4, offers the possibility of unprecedented security
assurance, leaving nowhere for vulnerabilities to hide: not in the
application, nor in its compiled code, nor in the kernel on which it
runs.

Acknowledgements
Thanks to June Andronick and the anonymous reviewers for their
feedback on earlier drafts of this paper.
NICTA is funded by the Australian Government through the De-
partment of Communications and the Australian Research Council
through the ICT Centre of Excellence Program.

References
Andrew W. Appel and Daniel C. Wang. JVM TCB: Measurements

of the trusted computing base of Java virtual machines. Techni-
cal Report TR-647-02, Princeton University, 2002.

Niklas Broberg, Bart van Delft, and David Sands. Paragon for prac-
tical programming with information-flow control. In APLAS,
volume 8301 of LNCS, pages 217–232, 2013.

2Isolation provided by the underlying kernel allows static Asm-
NoReadOrWrite assumptions to be trivially met.

Stephen Chong, Jed Liu, Andrew C. Myers, Xin Qi, K. Vikram,
Lantian Zheng, and Xin Zheng. Secure web applications via
automatic partitioning. In 21st SOSP, pages 31–44, 2007.

Michael R. Clarkson, Stephen Chong, and Andrew C. Myers. Civ-
itas: Toward a secure voting system. In S&P, pages 354–368,
2008.

Dorothy. E. Denning. A lattice model of secure information flow.
CACM, 19:236–242, 1976.

Joseph Goguen and José Meseguer. Security policies and security
models. In S&P, pages 11–20, 1982.

Sylvia Grewe, Heiko Mantel, and Daniel Schoepe. A formalisation
of assumptions and guarantees for compositional noninterfer-
ence. Archive of Formal Proofs, 2014. http://afp.sourceforge.
net/entries/SIFUM_Type_Systems.shtml.

Daniel Hedin, Arnar Birgisson, Luciano Bello, and Andrei
Sabelfeld. JSFlow: tracking information flow in JavaScript and
its APIs. In ACM Symp. Appl. Comput., pages 1663–1671, 2014.

Jeremy Jacob. Security specifications. In S&P, pages 14–23, 1988.

Cliff B. Jones. Development Methods for Computer Programs in-
cluding a Notion of Interference. D.Phil. thesis, University of
Oxford, 1981.

Gabi Keller, Toby Murray, Sidney Amani, Liam O’Connor-Davis,
Zilin Chen, Leonid Ryzhyk, Gerwin Klein, and Gernot Heiser.
File systems deserve verification too! In PLOS, pages 1–7, 2013.

Gerwin Klein, Kevin Elphinstone, Gernot Heiser, et al. seL4: For-
mal verification of an OS kernel. In SOSP, 2009.

Gerwin Klein, June Andronick, Kevin Elphinstone, Toby Murray,
Thomas Sewell, Rafal Kolanski, and Gernot Heiser. Compre-
hensive formal verification of an OS microkernel. Trans. Comp.
Syst., 32(1):2:1–2:70, 2014.

Xavier Leroy. Formal verification of a realistic compiler. CACM,
52(7):107–115, 2009.

Hongjin Liang, Xinyu Feng, and Ming Fu. Rely-guarantee-based
simulation for compositional verification of concurrent program
transformations. Trans. Progr. Lang. & Syst., 36(1):3:1–3:55,
2014.

Luísa Lourenço and Luís Caires. Dependent information flow
types. In POPL, pages 317–328, 2015.

Heiko Mantel, David Sands, and Henning Sudbrock. Assumptions
and guarantees for compositional noninterference. In CSF, pages
218–232, 2011.

Toby Murray, Daniel Matichuk, Matthew Brassil, Peter Gammie,
and Gerwin Klein. Noninterference for operating system kernels.
In CPP, pages 126–142, 2012.

Toby Murray, Daniel Matichuk, Matthew Brassil, Peter Gammie,
Timothy Bourke, Sean Seefried, Corey Lewis, Xin Gao, and
Gerwin Klein. seL4: from general purpose to a proof of in-
formation flow enforcement. In S&P, pages 415–429, 2013.

Andrew C. Myers. JFlow: Practical mostly-static information flow
control. In POPL, pages 228–241, 1999.

Tobias Nipkow, Lawrence Paulson, and Markus Wenzel. Is-
abelle/HOL — A Proof Assistant for Higher-Order Logic, vol-
ume 2283 of LNCS. 2002.

Andrei Sabelfeld and Andrew C. Myers. Language-based
information-flow security. J. Selected Areas Comm., 21(1):5–19,
2003.

Andrei Sabelfeld and David Sands. Probabilistic noninterference
for multi-threaded programs. In CSFW, pages 200–214, 2000.

Thomas Sewell, Simon Winwood, Peter Gammie, Toby Murray,
June Andronick, and Gerwin Klein. seL4 enforces integrity. In
Interactive Theorem Proving (ITP), pages 325–340, 2011.

Henning Sudbrock. Compositional and Scheduler-Independent In-
formation Flow Security. PhD thesis, TU Darmstadt, 2013.

David von Oheimb. Information flow control revisited: Noninflu-
ence = noninterference + nonleakage. In 9th ESORICS, volume
3193 of LNCS, pages 225–243, 2004.

Lantian Zheng and Andrew C. Myers. Dynamic security labels and
static information flow control. International Journal of Infor-
mation Security, 6(2–3), 2007.

http://afp.sourceforge.net/entries/SIFUM_Type_Systems.shtml
http://afp.sourceforge.net/entries/SIFUM_Type_Systems.shtml

	Introduction
	A Motivating Example
	Compositional Value-Dependent Information Flow Security
	Preliminaries
	Security
	Compositionality

	The Road to High-Assurance Information-Flow-Secure Languages

