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Abstract. Our language Cocent simplifies verification of systems software us-
ing a certifying compiler, which produces a proof that the generated C code is
a refinement of the original CoGent program. Despite the fact that Cogenr itself
contains a number of refinement layers, the semantic gap between even the lowest
level of Cocent semantics and the generated C code remains large.

In this paper we close this gap with an automated refinement framework which
validates the compiler’s code generation phase. This framework makes use of
existing C verification tools and introduces a new technique to relate the type
systems of CoGenT and C.

1 Introduction

In previous work, we designed a new language called Cogent [9] for easing the verifica-
tion of certain classes of systems code such as file systems. CoGenT is a linearly-typed,
pure, polymorphic, functional language with a certifying compiler. We used it in sepa-
rate work to write two Linux filesystems, ext2 and BilbyFs, and achieved performance
comparable to their native C implementations [2].

From a Cocent program the CoGent compiler produces three artefacts: C code, a
shallow embedding of the CoGent program in Isabelle/HOL [8]], and an Isabelle/HOL
proof relating the two. The compiler certificate is a series of language-level proofs and
per-program translation validation phases that are combined into one top-level theorem
in Isabelle/HOL. The most involved phase, and the phase we discuss in this paper, is the
translation validation phase relating CoGeNT’s imperative semantics to the generated C.

We present a refinement framework that enables the full automation of this phase
of CoGenT’s certifying compilation. This framework has several components that relate
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Fig. 1: An overview of the verification chain and our refinement framework.

Cocent values, states, types, and statements to their C counterparts. We put significant
proof engineering work into enabling the framework to bridge the gap between the
Cogent store and the C heap semantics. Moreover, we introduced the idea of partial type
erasure to eliminate linearity information from a CoGeNT type in order to relate it to the
corresponding C type. Furthermore, to relate CoGent and C statements, we developed a
refinement calculus which contains a set of compositional proof rules. Given a program,
our framework then customises the proof rules based on the values, types, and states that
are used in this program. Finally, our refinement tactic applies the customised rules in
a syntax-directed manner, certifying the refinement for this phase.

The method scales to significant CoGenT code size, as demonstrated in the two Linux
filesystems [2]] mentioned above. A snapshot of our work is available online [].

2 Overview and Background

This section explains the contribution of this paper within the broader CoGeNT project.
The heart of the CoGenT project is its certifying compiler. The certificate the compiler
produces is a refinement theorem relating the generated shallow embedding and the
generated C code. To ensure the C code is run correctly on the binary level, it can be
compiled by CompCert E|It also falls into the subset of Sewell et al.’s gcc translation
validator [12], which can be made to compose directly with our compiler certiﬁcateﬂ

The shallow Isabelle/HOL embedding is convenient for manual reasoning; however,
the compiler additionally produces a deep embedding of each CoGeNT program, for the
sake of structuring the generated certificate theorem and proof. There are two formal
semantics for this deep embedding: (1) a functional value semantics where programs
evaluate to values and (2) an imperative update semantics where programs manipulate
references to mutable global state.

! Mind the potential logical gap between our C parser’s C semantics and that of CompCert.
2 CoceNT’s occasionally larger stack frames lead to memcpy () calls that, while conceptually
straightforward, the translation validator does not yet cover.



The left side of summarises the generated program representations and the
breakdown of the compiler certificate. The program representations are (from the bot-
tom of [Figure T)): the C code, the semantics of the C code [13]] expressed in Simpl [11],
which is a generic imperative language inside Isabelle/HOL, the same expressed as a
monadic program [4], an A-normal [10] deep embedding of the CogenT program, and
a shallow embedding. Several theorems rely on the CoGent program being well-typed,
which we prove automatically using type inference information from the compiler.

The labelled arrows and the arrow from C to Simpl represent refinement proofs and
the arrow labels correspond to the numbers in the following description. The only arrow
that is not verified is the one crossing from C code into Isabelle/HOL at the bottom of
[Figure T]— this is the C parser [13]], which is a mature tool used in a number of large-
scale verifications [3]]. It could additionally be checked by Sewell et al.’s gcc translation
validation tool.

We briefly describe each intermediate theorem, starting with Simpl at the bottom.
For well-typed CoGeNT programs, we automatically prove the following four theorems,
which together form the compiler certificate:

(D The C parser’s Simpl code corresponds to a monadic representation of the C code.
(@ The monadic code terminates and is a refinement of the update semantics of the
Cocent deep embedding. To relate CoGeNT’s linear type system to the monadic one, we
introduce the reusable idea of partial type erasure.

() If a Cocent deep embedding evaluates in the update semantics, it evaluates to the
same result in the value semantics.

(@ If the Cocent deep embedding evaluates in the value semantics then the COGENT
shallow embedding evaluates to a corresponding shallow Isabelle/HOL value.

In order to prove high-level functional correctness, an additional step is necessary:

Arrow (5) indicates verification of user-supplied abstract data types (ADTs) imple-
mented in C and manual high-level proofs on top of the shallow embedding. We demon-
strated that this step is enabled by the previous steps for two real-world filesystems [2].

Step ) is a consequence of linear types. It is a general property about the language
and has been proven manually once and for all [9]. Steps (D), ), and (@), as well as
their respective proofs, are generated by our compiler for every program. The proof for
step (D is generated by an adjusted version of the AutoCorres tool [4]]. For steps 2)
and (4) we define compositional refinement calculi which enable the automation of the
proofs. The most involved refinement proof is the one for step (2) which we present in
this paper. It took about three person years to develop tools for automating this proof.
The calculus for step (4) is similar but much simpler, as at this stage one does not reason
about the state. In comparison, its development only took a few person weeks.

The right side of expands on the refinement framework used for proving
step ). The bottom layer represents the underlying theory we developed for defining
primitive value and type relations which we use to create a refinement calculus be-
tween Cocent deeply embedded expressions and corresponding monadic statements.
The middle layer represents the proof tools that automate the refinement proof on a
per-program basis. These proof tools rely on the underlying theories about the language
in general, and on compiler generated theories specific to the program. In particular,
we have a tool for generating non-primitive data relations, one for specialising complex
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Fig. 2: Definitions for CoGenT fragment

rules in the calculus to support automation, and finally a proof automation tactic which
composes the proof rules to provide a fully-automatic refinement proof.

2.1 CoGENT

CoGenT is a restricted, polymorphic, higher-order, and purely functional language with
linear types. The linear types ensure that resources such as memory are disposed of
correctly without run-time support like garbage collection. Crucially for us, they also
allow CogenT to be compiled into efficient C, including destructive updates to values
rather than the repeated copying common in purely functional styles.

Variables of linear type must be used exactly once. This means each active mutable
heap object has exactly one active pointer in scope at any point in the program. Hence,
the difference between a destructive update and a pure copy-update is unobservable.

The Cocent compiler generates C code, a shallow embedding, and a collection of
“hints” used by the proof tactic to certify the compilation. Importantly, the performance
of the generated C is comparable to carefully handwritten C.

Cocent’s certifying compilation makes the verification of filesystems more cost-
effective, fully automating a significant part of the low-level proofs. We demonstrate
this on two real-world Cogenr filesystems, with a minimal TCB [2].

This paper focuses on the lower-level generated refinement proofs, which con-
nect CoGENT’s update semantics to C. introduces a relevant fragment of Co-
GENT. Many features of the full language are omitted here and described in detail else-



1 flip :{f :U8}w — {f :: U8} w

2 flipx =
3 takex' {f=y}=x
4 inify==

5 then put x'.f := 1
6 else put x'.f :=0

Fig. 3: Example function in CoGeNT. flip updates a record on the heap in place.

where [9]], including polymorphism, sum types, and the foreign function interface. The
following gives a brief summary.

Much of the syntax presented in our fragment is standard for a functional language,
such as handling control flow (if) and local bindings (let). The main point of difference
is CoGeNnT’s record system: Some care is needed to reconcile record types and linear
types. If a record contains at least one linear field, the whole record is of linear type.
Otherwise, the linear field could be shared by sharing the record.

Accessing records becomes more complex as well. For instance, assume that Object
is a type synonym for a record type containing an integer and two (linear) buffers, where
Object = {size :: U32,b; :: Buf, b, :: Buf} u. Let us say we want to extract the field b;
from an Object. If we extract just a single Buf, we have implicitly discarded the other
buffer b,. However, we cannot return the entire Object along with Buf, as this would
introduce aliasing. Our solution is to return along with Buf an Object where the field
b; cannot be extracted again, and reflect this in the field’s type, written as b; :: Buf.
This field extractor, whose general form is take x {f = y} = ¢; in e,, operates as fol-
lows: given a record ey, it binds the field f of e; to the variable y, and the new record to
the variable x in e,. If that field is linear, it will then be marked as unavailable, or taken,
in the type of the new record x.

Conversely, we also introduce a put operation, which, given a record with a taken
field, allows a new value to be supplied in its place. The expression put e;.f := e; returns
the record in e; where the field f has been replaced with the result of e,. Unless the type
of the field f allows it to be discarded, it must already be taken, to avoid accidentally
destroying our only reference to a linear resource.

We distinguish boxed records stored on the heap from unboxed records that are
passed by value. Unboxed records can be created using a simple struct literal {f; = ¢;}.
Boxed records are created by invoking an externally-defined C allocator function. For
these allocation functions, it is often convenient to allocate a record with all fields al-
ready taken, to indicate that they are uninitialised. That is, a function for allocating
Object-like records might return values of type: {size :: §32,b; :: Buf, b, :: Buf} w.

Also included in a record type is the storage mode of the type. A record is stored
on the heap when its associated mode m is not unboxed. For boxed records, the storage
mode distinguishes between those that are writable vs. read-only.

Example 1. defines a simple function in Cocent which, given a mutable
record x, first takes the field f and, depending on its value, destructively updates the
field with a new value, returning the updated record.



repr(Q) = QO repr({f :: 7’} u) = {f :: repr(r)} repr(t — p) = Fun
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Fig. 4: Partial type erasure of dynamic typing relation for update semantics

The details of CoGENT’s type system, semantics, and this proof are presented in [9],
we only repeat the top-level concepts here.

The dynamic big step update semantics maps a triple of environment U, expression
e, and mutable store u to a result value u and a new mutable environment y’, written
Uvrelul, uly. The rules [9] for variables and let are straightforward. Functions
are top-level functions in CoGent, and a function name simply evaluates to the lambda-
expression it represents. The take and put rules evaluate as described above.

The static semantics include the standard typing judgement I" + e : 7. Unlike con-
ventional type systems, linear type systems are substructural, which means that the
context I cannot be treated merely as a set of assumptions that always grows as one
descends into the syntax tree. Instead, assumptions may also be removed from the con-
text. This complication requires us to occasionally generalise the corres rules presented
in with multiple typing assumptions with different contexts.

To state type preservation for CoGent, we define the corresponding typing judge-
ment for dynamic values, written u | u : T and a generalisation of it to environments and
contexts, written U | u : I'. With this, we can prove the following (see also [9]]).

Theorem 1 (type preservation). For a program e, if ' + ¢ : Tand U | u : I and
Uvrelul,ul,thenuly v

For a Cogent value to be well-typed, all accessible pointers in this value, e.g. a
record, must be valid. This is important for proving safety, but becomes cumbersome
when showing refinement to C as there exist values in the C code, such as those for taken
fields, which may include temporarily invalid pointers. We therefore include additional
information in each CogenT value, called its representation, which provides enough
type information to determine the corresponding C type, without requiring recursive
descent into the heap. In other words, the representation shown in contains
only the type information which is pertinent to C, with the linearity information erased.
We call this technique partial type erasure. The value typing relation ensures that the
representation information agrees with the value’s type.

2.2 AutoCorres and C Monads in Isabelle/HOL

We use the C-to-Simpl [13] parser to provide a formal semantics for the generated C
code. In principle, we could work from the C parser’s output directly; however, this
would mean dealing with the details of its low-level memory model. Instead, we opt to
work with a typed heap model, provided by AutoCorres [4]]. Specifically, the state of the
AutoCorres monadic representation contains a set of typed heaps, each of type 7 ptr =
7, one for each type 7 used on the heap in the C input program.



As AutoCorres was designed for human-guided verification, it uses many context-
sensitive rules to simplify the generated code. As we aim to verify code automatically,
we switch off most of these simplification stages in order to obtain predictable output.

AutoCorres generates shallow embeddings of code in the nondeterministic state
monad of Cock et al. [3]. In this monad, computation is represented by functions of
type state = (a X state) set X bool. Here state is the global state of the monadic
program, including global variables, while « is the return-type of the computation. A
computation takes as input the global state and returns a set, results, of pairs with new
state and result value. Additionally the computation returns a boolean, failed, indicating
whether there potentially was undefined behaviour.

As C does not guarantee that all pointer locations are valid, AutoCorres emits
is-valid guards before each memory access. When proving refinement between Co-
GenT and monadic code, we need to discharge those guards using a state invariant

fion 3.
[Figure 5|shows an example AutoCorres specification, using the following keywords:

do...;...od sequence of statements

condition cond e, e, run e, if cond is true, otherwise run e,

return v monadic return

gets f access part of monadic state given by f

modify & update part of monadic state given by &

guard G program fails if monadic state does not satisfy G

3 Refinement Framework

Recall that for a well-typed CoGenT program, the compiler emits C code, a deep em-
bedding of the program’s semantics, and a proof that the C code correctly refines this
embedding. We choose C as a compilation target because most existing systems code
is written in C, and thanks to tools like CompCert and gcc translation validation, our C
subset has formalised semantics and an existing formal verification infrastructure.

The right side of provides an overview of the generation of our refinement
proof. To phrase the refinement statement, we first define how deeply-embedded CoGENT
values relate to values in the monadic embedding (Section 3.2).

The C code generation is straightforward and this step itself does not perform global
optimisations or transformations. Such transformations, for instance A-normalisation,
are performed in earlier compiler phases. A-normalisation in particular is performed to
simplify code generation, but it also simplifies our C refinement. Since it is performed
early (and verified early on top of the shallow embedding [9])), it is sufficient for us to
only consider CoGeNT expressions in A-normal form here, where nested subexpressions
are replaced with explicit variable bindings. With this, the refinement calculus contains
a set of compositional corres proof rules, typically one for each A-normal CoGENT con-
struct, which are applied automatically in a syntax-directed manner (Section 3.4).

The corres proof rules depend on preconditions about the expected state of the pro-
gram, such as preconditions about the type and validity of pointers in the heap. We
propagate the conditions similarly to the proof calculus of Cock et al. [3]]. Our refine-
ment theorem does not need an explicit assumption of well-typedness for the whole
Cogcent program — The proof tactic will simply fail for programs that are ill-typed.



1 flip - {f :: U8} — {f :: U8} 1 flipc :: recy ptr = (rec; ptr, o) nondet_monad

2 flipx = 2 flipc x = do
3 takex {f=y}=ux 3 guard (Ao is-valid o x);
4y« gets (Ao. o[r].f);
4 inlettmp, =0 5 tmp, < return O;
5 and tmp, = (y == tmp,) 6  tmp, < return bool (y = tmp,);
6 in if tmp, 7T tmpresur < condition (bool tmp, # 0)
7 then let trmp; = 1 8 (do tmp; < return 1;
8 and x” = put x'.f := tmp;| 9 guard (Ao is-valid o x);
10 modify (Ao o[x].f := tmps);
9 in x” 11 return x od)
10 else let rmp, = 0 12 (do tmp4 < return 0;
11 and x” = put x'.f := tmp, |13 guard (Ao is-valid o x);
14 modify (1o o[x].f := tmp,);
12 in x”’ 15 return x od);
16 return tmp, .z,
17 od

Fig.5: Intermediate representations of Cocent function from Left: A-
normalised source code, embedded into Isabelle/HOL. Right: AutoCorres monadic se-
mantics for generated C code.

Since our corres proof rules are specialised to CoGenT and to the operation of the
compiler, we can predict the form of their preconditions and design proof rules to com-
bine them. This forms the basis for automation.

3.1 Refinement Statement

We define refinement generically between a monadic computation p,, and a COGENT
expression e, evaluated under the update semantics. We denote the refinement predicate
corres. The state relation R changes for each CoGENT program, so we parametrise corres
by an arbitrary state relation R. It is additionally parametrised by the typing context I
and the environment U, as well as by the initial update semantics store y and monadic
shallow embedding state o.

Definition 1 (correspondence).

corresRep, Ul uo =
Ulu:I' — (u,0) e R —
(= failed (p,, o) A
Vv 0. (Wi, 07) € results (p,, o) —
A uUvrelpul,uly A@',0') € RAval-rel uvy)))

states for well-typed stores u that if the state relation R holds initially, then
the monadic computation p,, cannot fail and, moreover, for all executions of p,, there
must exist a corresponding execution under the update semantics of the expression e
such that the final states are related by a state relation R and a value relation val-rel



holds between the results of e and me] We present the state and value relations in

AutoCorres proves that if the monadic code never fails, then the C code is type-
and memory-safe, and is free of undefined behaviour [4]. We prove non-failure as a
side-condition of the refinement statement, essentially using CoGENT’s type system to
guarantee C memory safety during execution. The corres predicate can compose with
itself sequentially: it both assumes and shows the relation R, and the additional typing
assumptions are preserved thanks to type preservation (Theorem 1J).

3.2 Data Relations

For each program, based on a library for primitive types, we generate a set of relations
between the values, types and heaps of the Cocent and monadic code. We denote these
as val-rel, type-rel and R respectively.

We must give these relations separate definitions for each CoGeNT type, because
each C struct type is embedded as a distinct Isabelle/HOL record. We use Isabelle’s
ad-hoc overloading mechanism for this.

Recall that AutoCorres generates different typed heaps for each C type. The type
relation type-rel is used by the state relation R to select the corresponding typed heap
for each Cogent type. It is defined using the repr function (Figure 4)) which performs
partial type erasure, unifying CoGenT types that differ only in linear annotations in order
to relate them to the same C type.

Given val-rel and type-rel for a particular CoGenT program, the state relation R
defines the correspondence between the store u over which the CogenT update semantics
operates, and the state o~ of the monadic shallow embedding. This relation is made into
an invariant in corres (Section 3.1)); it allows us to show that all C pointer accesses
satisfy is-valid, whenever there are corresponding objects in the CoGENT store 1.

Definition 2 (state relation). (u, o) € R if and only if for all pointers p in the domain
of u, there exists a value v in the appropriate heap of o (as defined by type-rel) at
location p, such that val-rel (u p) v holds.

Generating Data Relations We generate R, val-rel and type-rel after obtaining the
monadic program and its typed heaps from AutoCorres. Our CoGenT compiler outputs
a list of (CogenT, C) type pairs, which is used by an Isabelle/ML procedure to generate
the needed relations.

Example 2. The program in uses the types U8, Bool and {f :: U8}, which
correspond to the C types word8, bool and rec;, respectively. For val-rel and type-rel,
the U8—word8 relation can be defined a priori, but bool and rec; are generated with the
monadic program and their data relations are generated dynamically:

(pre-defined)  val-rel (a :: U8) (ac :: word8) = (a =ac)
val-rel (a :: Bool) (ac :: bool) = (a = (bool ac # 0))
val-rel (a :: {f :: U8}) (ac :: recy) = val-rel (a.f) (ac.f)
3 Although corres technically permits the monadic code to return no results, the code that we
generate will additionally always return results # 0 as long as it has not failed.



Note that the val-rel definition for {f :: U8} depends on the definition for its field of type
U8. The Cocent compiler always outputs the type list in dependency order, so this does
not pose a problem.

The state relation R cannot be overloaded in the same way as val-rel and type-rel,
because it relates the heaps for every type simultaneously. We introduce an interme-
diate state relation, heap-rel, which relates a particular typed heap with a portion of
the Cogcenr store. Like the other relations, this intermediate relation can make use of

type-based overloading. Following we define heap-rel for each type 7 that
appears on the heap as follows:

heap-rel o u = Vp. u(p) — v A type-rel (vrepr(v)) T —
is-valid o p A val-rel v o[ p]
where vrepr gives the partially-erased type for a value, similar to repr. The state rela-
tion over all typed heaps o, is R o = (heap-rel o7, it A heap-rel o, 1 A ...).

3.3 Refinement Theorem

We state the overall top-level C refinement theorem below. In addition to the assump-
tions listed here, it also assumes that corres holds for all the foreign functions used in
the program.

Theorem 2. Let f be a CoGENT function, with type T and body e. Let p,, be the monadic
embedding of its generated C code. Let u and v,, be arguments of appropriate type for f
and p,, respectively. Then:

Yu o. val-rel uv,, — corres Re (pp,, vi) (x> u) (x: T) u o

Example 3. In[Figure 3| f = flip, p, = flipc, and T = 7/ = {f :: U8}.

3.4 Refinement Proof

This section describes the main components of the refinement proof automation, as
shown in the proof calculus used to relate Cogent and C programs, the gen-
eration of well-typedness theorems for CoGenr, and the automated tactic that combines
these two components to perform the overall refinement proof.

Refinement Calculus depicts the corres rules in our calculus for variables,
let, if, and for take and put expressions for boxed records. The full calculus is available
online [1]] under c-refinement/CDSL_Corres.thy. The proofs of the corres rules for

compound expressions rely on[Theorem I]to infer value well-typedness.
The assumptions for these rules fall under three main groups:

1. Well-typedness assumptions; we generate typing theorems to discharge these.

2. Assumptions relating the values and mutable heaps of Cogent and C. Once a C
program is read and concrete data relations are defined, we specialise
the corres rules to simplify these assumptions.
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Fig. 6: Some of the important corres rules

3. corres assumptions on sub-expressions, discharged through our proof automation.

The rules Var and LEeT correspond respectively to the two basic monadic operations
return, which yields values, and do . ..; ... od, for sequencing computations.

Observe that LET is compositional: to prove that let x = e; in e, corresponds to
doe; ¢ od, we must prove that (1) e; corresponds to ¢} and (2) e corresponds to ¢/,
when each are executed over corresponding results v, and v,, (e.g. as yielded by e,
and ¢/ respectively). This compositionality, which is present in our whole calculus,
significantly simplifies the automation of the refinement proof.

The IF rule relates if c then e else e, expressions to monadic condition (bool ¢’ #
0) e} ¢ statements. It works similarly to LET, requiring an equivalence between ¢ and
(bool ¢’ # 0), and correspondences between e and e}, and between e; and €. Note that
we represent booleans in C using a struct bool with an integer field named bool; we



avoid C’s builtin type _Bool because it may be an alias for an existing integer type like
U8 and therefore indistinguishable from that integer type.

The more intricate rules in are Pur and Take, which apply to put and take
on boxed records (additional rules exist for unboxed records). Recall that boxed records
are stored on the heap and are subject to the linear typing rules. These two rules are
involved and contain many assumptions. They are mainly presented here to illustrate to
the reader why we have a separate phase later on dedicated to simplifying them.

The Pur rule handles the correspondence between (let x = put e;.f; := e; in e3)
expressions and (do - « guard (Ao is-valid o p’); - < modify h; ¢/ od) statements.
Note that unlike let, if, and take, put does not contain a continuation. Therefore, the
compiler ensures that put expressions always appear within let expressions, which al-
lows us to have a compositional rule for put in the same style as the other operators.

Recall that if e; is a pointer p, put updates the field f;, of the record pointed to
by p to the value of e,. Similarly, the monadic code asserts that the corresponding p’
is a valid pointer, then modifies the record at p’ in h. At this stage & and is-valid are
left unspecified, as these rules are defined generically regardless of type. Therefore,
our Pur rule additionally includes a number of assumptions describing the expected
properties of # and is-valid. In the next subsection, we specialise this rule to eliminate
these assumptions.

TAKE is similar, it relates (take x {f; = y} = e in e;) expressions and
(do _ « guard (Ao is-valid o p'); y < gets f'; ¢ ¥ od)

statements. Recall that take removes the field f; from e, binds it to a new variable y
and runs e;. The corres assumptions of TakE are that (1) p” and e;’s value are related,
and (2) given related values v, and v,,, e> corresponds to e}, v,, under the extended value
environment (f; — v,,e; — p(Ptr r),U). We need to re-add e¢; to U because it is
linear and cannot be reused.

Generating Specialised Rules As mentioned earlier, we generate program-specific
proof rules for operators involving specific C types, such as take and put. This is
because the set of C types, different for each program, is shallowly embedded into
Isabelle/HOL. Thus, the assumptions for rules involving those types can only be dis-
charged once the C code has been parsed into Isabelle/HOL.

We could prove these assumptions while applying the corres rules, but this would
be inefficient for rules that are applied many times. Thus, we generate specialised rules
in a separate preprocessing phase. Implemented as an Isabelle/ML program, this phase
reads the (CogenT, C) type list used for generating data relations to produce rules for
the appropriate C and CoGENT types.

Example 4. For the Cocent record {f :: U8} in we generate the following
specialised rules for take and put:



(') (take x {f =y} =ejiney): 7’
(') ke {f:: U8 w U8, x> {f 88w, [h)lFey: T
p’ has type rec; ptr (e p(Ptrr)elU val-rel (p (Ptr r)) p’
type-rel (repr(U8)) word8 type-rel (repr({f :: B8} w)) (rec; ptr)
(Yvy V. val-rel v, v, — corresRe; (€5 viy) (v - vy, x 5 (p (Ptrr)), U)
P U8 x> {fuB8lwlh)uo)
corres R (take x {f =y} = ¢; in e;)
(do _ « guard (Ao is-valid o p’); y' « gets (Ao o[p'].f); € y' od)
Uily)uo

TAKE

Ar. (') F (letx =pute; f:=eyines) : 7 M) ke - {f:U8w
'+ (pute.f:=e):{f:: U8 w (ey > pPtrr)eU (e > Vv)elU
val-rel (p (Ptrr)) p’ type-rel (repr({f :: B8} w)) (rec; ptr) val-rel vV

(Yu',0’. corresRes 5 (e; = p(Ptrr), U) (e; — {f:: U8} w,In) ¢’ o) p
UT

corres R (let x = put e;.f := ¢, in e3)
(do _ « guard (1o is-valid o p'); - < modify (Ao o[p’].f :=V'); ¢} 0d)
Uh)uo

Note that the cumbersome record-update assumptions from [Figure 6|have been reduced
to val-rel and type-rel statements. This is only possible after we obtain the concrete
program and its data relations. We also instantiate the state relation R and show that
take and put preserve it, allowing us to simplify the heap-update assumptions.

Well-typedness The CoGent compiler proves, via an automated Isabelle tactic, that
the deep embedding of the input program is well-typed. Specifically, it shows for each
function f with argument x, body e, and type 71 — 75, that x = 7| e : 7.

Recall that the type system is substructural, and that proving refinement requires ac-
cess to the typing judgements for each sub-expression of the program. To solve this, the
Cocent compiler instructs Isabelle to store all intermediate typing judgements estab-
lished during type checking. These theorems are stored in a tree structure, isomorphic
to the CoGent program’s type derivation tree. Each node is a typing theorem for a pro-
gram sub-expression, and can be retrieved by the refinement proof tactic as it descends
into the program.

Proof Automation The core of our refinement prover is an Isabelle/ML tactic that
proves the corres refinement theorem for each Cogenr function in the
program, by applying the corres rules previously proven, both generic and specialised
(Section 3.4). This algorithm is straightforward as our rules are syntax-directed.

The tactic also expands definitions of val-rel and type-rel in order to
discharge data relation assumptions in those corres rules, and retrieves the type deriva-
tion tree for the given CoGenT function to discharge all well-typedness assumptions.



Example 5. For flip in we wish to prove the refinement theorem

corres R flip (flipcvyy) (x> u) (x: {f:: U8} ) uo
or after unfolding

corres R (take x’ {f =y} = xin ...)
(do guard (Ao is-valid o x); y « gets (1o o[r].f); ... od)
X uwx:{f:U8} uo

The first step of the proof applies the specialised take rule for {f :: U8} (Section 3.4).
After discharging its typing and val-rel assumptions, we are left with a corres obligation
on the remainder of the function, which can in turn be solved using the other proof rules.

Our tactic can be used easily for single functions, but extending it to whole programs
required significant proof engineering effort, as we must handle function calls both to
externally-defined C functions and to (potentially higher-order) CoGent functions.

Foreign functions CoGenT code depends on calls to foreign C functions to perform
loops and I/O. Our framework requires these functions to be well-behaved, i.e. they
respect CoGENT’s termination order and do not break the CoGenT type system (e.g. by
modifying variables they do not have access to).

Foreign functions are user-supplied and not verified automatically. Thus, when prov-
ing refinement theorems for CoGent code that calls these functions, we automatically
insert assumptions that they are well-behaved. These assumptions remain until they are
resolved by manual verification.

Whole-program refinement CoGENT is a total language and does not permit recursion,
so we have, in principle, a well-ordering on function calls in any program. However, for
higher-order functions, this well-ordering is non-obvious and difficult to work with.

In practice, most function calls in systems code are direct calls to first-order func-
tions. For such functions, we can simply prove the corres theorems in bottom-up fash-
ion, starting from the leaf functions and ending at the top-level functions.

There is one major exception: CoGeNnT code cannot express loops using only first-
order functions. Our CoGENT programs use iteration combinators, which are second-
order foreign functions that take a CoGent function pointer as the loop body (similar to
the map or fold combinators in functional programming).

Therefore, our framework also supports second-order calls to foreign functions. Be-
fore assuming corres for these functions, we first prove corres for the argument func-
tion (i.e. the loop body).

This technique allows us to automate refinement for code with first- and second-
order calls. While this restriction means that not all CoGent programs can be verified
in our framework, we developed CoGenT code for two file system drivers [2] in this
fragment, demonstrating that substantial programs can be written in this subset.

4 Related Work

To date, the largest trustworthy compilation projects are the CompCert [7]] C compiler
and the CakeML [6] ML environment. In contrast to CoGenT, they compile general-
purpose programming languages and rely more heavily on verified compilation passes.



CompCert translates (a subset of) C to binary while our compiler translates the
functional Cogent language to C. CompCert’s core compilation process is verified and
its optimisation passes are validated; the compiler executable itself is extracted from
Coq into Caml. There is ongoing work to validate the Coq code extraction process and
the Caml compiler for CompCert.

We chose to use certificates for most of CoGent’s compiler passes, because our
proof tools for C run in Isabelle directly, and our CogenT compiler is written in Haskell,
which does not have a formal semantics nor a verified runtime at present. On one hand,
processing the certificates is time-intensive. On the other hand, we do not need to trust
the code extractor, nor the runtime for the extracted language. We do need to either trust
the C compiler or use a verified one.

CogenT is closer to CakeML in that it is a high-level source language. However,
Cocenr targets a different application area. CakeML is a Turing-complete dialect of ML
with complex semantics, and is suited for application code. On the other hand, CoGENT
is a restricted language of total functions with simple semantics that facilitate equational
reasoning. CoGenT avoids the need for a large runtime and a garbage collector so it can
be used for embedded systems code, especially layered systems code with minimal
sharing such as the control code of filesystems or network protocol stacks.

5 Take Away Lessons and Future Work

When designing the certifying compiler, we made a trade-off by writing the CoGent
compiler tool-chain in Haskell, while the proof component was written in Isabelle’s
Standard ML environment. This divide allows the CoGeNT tool-chain to be used outside
the theorem prover, and allows the proof tools to build on the existing C parser and
AutoCorres framework.

On the other hand, this choice leads to complexity in designing the interface be-
tween these components. This is illustrated by our well-typedness proof of
where the CoGENT compiler generates a certificate with the necessary type derivation
hints. Initially, we used a naive format consisting of the entire derivation tree, resulting
in gigabyte-sized certificates. We implemented various compression techniques to re-
duce the certificates to a reasonable size (a few megabytes). It is possible to avoid these
certificates entirely by duplicating the type inference algorithm in Isabelle/ML, but this
would increase the code maintenance burden.

Even though reusing the C parser and AutoCorres is desirable, they take a long
time to process our verbose generated C code. They take a total of 12 CPU hours to
translate the ext2 filesystem into a monadic embedding and they take 32 CPU hours
when applied to BilbyFs. Further proof optimisation is needed.

Optimisation of the generated code is another topic for future work. High-level
CocgenT-to-CoGENT optimisations will be easy, as they can be verified over the shal-
low embedding of CoGenT using equational rewriting. For instance, we verified A-
normalisation using rewriting; while it is not an optimisation, it is an example of a code
transformation that does not affect the CoGgent-to-C proof. For low-level optimisations,
we rely on the C compiler so as not to complicate our syntax-directed proof approach.
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Conclusions

We developed a compositional refinement calculus and proof tools to create a fully au-
tomatic refinement certificate from Cogent’s update semantics to C, including the use of
partial type erasure to relate COGENT’s expressive types to simpler C types. This refine-
ment certificate is the most involved step in the full automation of the overall compiler
certificate. Through the co-generation of code and proofs, our framework significantly
reduces the cost of reasoning about efficient C code, by automatically discharging cum-
bersome safety obligations, and providing an embedding more amenable to verification.
Our framework has been applied successfully to two real-world file-systems.
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