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Abstract
We propose a concurrency reasoning framework for im-
perative programs, based on the Owicki-Gries (OG) foun-
dational shared-variable concurrency method. Our frame-
work combines the approaches of Hoare-Parallel, a formal-
isation of OG in Isabelle/HOL for a simple while-language,
and SIMPL, a generic imperative language embedded in Is-
abelle/HOL, allowing formal reasoning on C programs.

We define the COMPLX language, extending the syntax
and semantics of SIMPL with support for parallel compo-
sition and synchronisation. We additionally define an OG
logic, which we prove sound w.r.t. the semantics, and a ver-
ification condition generator, both supporting involved low-
level imperative constructs such as function calls and abrupt
termination. We illustrate our framework on an example that
features exceptions, guards and function calls. We aim to
then target concurrent operating systems, such as the inter-
ruptible eChronos embedded operating system for which we
already have a model-level OG proof using Hoare-Parallel.

Categories and Subject Descriptors D.1.3 [Programming
Techniques]: Concurrent Programming; F.3.1 [Logics and
Meanings of Programs]: Specifying and Verifying and Rea-
soning about Programs

Keywords formal verification, programming languages,
imperative code, concurrency, Owicki-Gries, Isabelle/HOL

1. Introduction
C is still the language of choice for developing software with
high performance and precise memory requirements, for it
allows aggressive manual optimisation. At the same time,

performance-demanding low-level systems, such as oper-
ating system (OS) kernels or real-time systems, also have
strong safety and security objectives, which call for for-
mal verification. Multiple frameworks for formal reasoning
about C programs exist and have successfully been used,
ranging from push-button automated tools to check the ab-
sence of classes of runtime errors, to more effort-intensive
interactive methods to prove deeper correctness properties.
We target the latter, minimising the trust needed in the tools,
maximising the strength of properties that can be proven. To
this end, we propose a framework for formal, interactive ver-
ification of shared-variable concurrent imperative low-level
programs, which can be combined with a C parser front end
for concurrent C code verification, paving the way to verified
interruptible or multicore systems.

We follow a common approach to reasoning about pro-
grams: embedding the given language within a powerful the-
orem prover, Isabelle/HOL [Nipkow et al. 2002] in our case.
That is, we define abstract and concrete syntax, and specify
runtime behaviour. Although it is possible to directly reason
over the semantics of programs, it is untenable and not scal-
able. It can instead be automated by the definition of a set of
logic rules, reducing the program’s correctness statement to
a series of simpler verification conditions. This verification
condition generator (VCG) is typically syntax-directed, un-
folding the proof according to the rules of the logic. In order
to justify such reasoning with our set of rules, we prove their
soundness with respect to the language’s formal semantics.

Such an infrastructure exists for reasoning about sequen-
tial C programs in Isabelle/HOL. C programs are translated
into SIMPL [Schirmer 2006, 2008], a generic, sequential,
imperative language formalised in Isabelle/HOL. The C-to-
Isabelle translation [Tuch et al. 2007] is unavoidably trusted,
parsing C code into formal logic, and is therefore as con-
servative and direct as possible. The SIMPL framework pro-
vides syntax and semantics for the language, as well as a
Hoare logic (with its soundness proof) and a VCG. It has
successfully been used in the landmark verification of the
seL4 microkernel, guaranteeing multiple correctness prop-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

CPP’17, January 16–17, 2017, Paris, France
c© 2017 ACM. 978-1-4503-4705-1/17/01...$15.00

http://dx.doi.org/10.1145/3018610.3018627

138



erties of seL4 to the C implementation [Klein et al. 2010;
Murray et al. 2012]. The framework, however, lacks the abil-
ity to reason about concurrency.

We extend SIMPL with support for shared-variable con-
currency, following the foundational Owicki-Gries (OG)
method [Owicki and Gries 1976]. OG has been for-
malised in Isabelle/HOL’s library in the Hoare-Parallel the-
ory [Prensa Nieto 2002] for a simple high-level while-
language IMP. We chose OG over more recent variants
(e.g. Rely-Guarantee [Jones 1983], Concurrent Separation
Logic [OHearn 2007]) for the simplicity of OG logic
and its suitability to reason about potentially-racy high-
performance shared-variable system code: we previously
successfully used it for a model-level verification of the in-
terruptible eChronos embedded OS [Andronick et al. 2015,
2016]. The OS provides an API to applications for synchro-
nisation and locking, but the OS code itself shares racy mem-
ory state with interrupt handlers1. In this previous work, we
used Hoare-Parallel’s formalisation of OG and we demon-
strated how the well-known explosion of verification con-
ditions of the OG method can be efficiently handled by the
powerful automation of modern theorem provers and by the
careful modelling of controlled interleaving. We now want
to push our proofs down to guarantees about the C imple-
mentation, which is the motivation for the work presented
here.

Our contributions are the following:

• We propose the language COMPLX as an extension of
SIMPL with support for parallel composition and syn-
chronisation, and we define its concurrent semantics. We
largely reuse SIMPL’s existing infrastructure to facilitate
the port of existing verifications that use SIMPL (sec-
tion 3).
• We define a practical OG-based logic, inspired by Hoare-

Parallel, and a VCG to facilitate semi-automated proof
using the logic (section 4).
• We prove our logic sound with respect to the semantics,

ensuring that proofs using the logic are true guarantees
about the execution of the program (section 5).
• Finally, we present a case-study demonstrating the use

and practicality of this framework for the verification of
concurrent imperative programs (section 6).
• As part of the examples, we demonstrate how we support

concurrent function calls, including a technique to handle
arguments passing and local variables.

With additional work, the existing infrastructure around
SIMPL, including the C-to-Isabelle parser, can be updated to
enable reasoning about a significant subset of concurrent C
code in Isabelle/HOL. This would open up the applicability
to several existing codebases, including the eChronos OS,

1 Preventing races would require disabling interrupts, resulting in increases
of latency unacceptable for such real-time systems.

and potentially a multicore variant of seL4. Our framework
assumes that the granularity of interleaving is that of C
instructions; porting the guarantees down to executable code
and weak memory architectures is not in the scope of this
paper.

All our Isabelle/HOL formalisations and the case studies
are available online [COMPLX].

2. Background
In this section, we present existing work that our paper
combines and extends. The first section presents SIMPL,
an existing formalisation of sequential imperative programs
in Isabelle/HOL (and the existing infrastructure to verify
C code). The second presents Hoare-Parallel, an existing
formalisation of OG for a simple while-language in Is-
abelle/HOL. Our work consolidates those two components
to create a language that provides a basis for reasoning about
concurrent C code in Isabelle/HOL.

2.1 Verification of C in Isabelle/HOL
As mentioned in the introduction, SIMPL allows embedding
of real programming languages into Isabelle/HOL, and is
sufficiently expressive to model a substantial subset of C
features. SIMPL can be used directly for reasoning about
C code and it has indeed been used directly in the verifi-
cation of LEDA’s [Mehlhorn and Näher 1999] shortest path
checker [Rizkallah 2014].

A far more common verification approach though is using
the C-to-Isabelle parser [Tuch et al. 2007] which converts a
large subset of C99 code into low-level SIMPL code. SIMPL
and the C-to-Isabelle parser together provide an established
infrastructure for the verification of sequential C programs in
Isabelle/HOL. They have been used in the verification of the
seL4 microkernel which is written in C [Klein et al. 2010]
and in several other C verification projects [Amani et al.
2016; Murray et al. 2012; Noschinski et al. 2014].

Syntax SIMPL provides the usual imperative language
constructs, including functions, variable assignment, se-
quential composition, conditional statements, while loops,
and exceptions. SIMPL has no expression language of its
own; expressions are shallowly embedded. The notion of
state is also generic and left for instantiation; it is defined as
an Isabelle record of local and global variables (variables are
then simply functions on the state). The C-to-Isabelle parser
only supports side-effect-free expressions, modelled as Is-
abelle/HOL expressions, and it instantiates the state space
to C memory states. The following is a summary of SIMPL
syntactic forms, where e represents an expression:

c = Skip | v := e | c1 ; ; c2 | IF eTHEN c1 ELSE c2 FI
|WHILE eDO cOD |TRY c1 CATCH c2 END
|Throw |Call n |DynCom cs |Guard f g c

The DynCom cs statement is a dynamic (state depen-
dent) command that takes as argument cs which is a func-
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tion from states to commands. It is used in C verification to
encode argument passing and scoping in function calls. The
Guard f g c statement throws the fault f if the condition g
is false and executes c otherwise. It is used in C verifica-
tion to encode certain correctness conditions ensuring that
the C program does not exhibit undefined behaviour (e.g.
division by zero). Call just takes the name of the function
being called.

Semantics Computations in SIMPL are described by sev-
eral equivalent models, including big- and small-step seman-
tics. Here we are interested in the small-step semantics, as
we want to model the fine-grain interleaving of concurrent
programs.

The small-step semantics is represented by statements of
the form Γ ` 〈c, s〉 → 〈c′, s′〉 that read as: program c in state
s takes a step to program c′ and the updated state s′ under
the procedure environment Γ which maps function names
to function bodies. Both s and s′ are extended states: they
are either Normal states, representing typical execution flow
(including exception handling), or Stuck states, generated
by calls to non-existent procedures, or Fault states, gener-
ated by failed Guard statements. For normal program states,
s = Normal x, the semantics is as expected; whereas in
cases s = Stuck or s = Fault f we may only transform c to
Skip with s′ = s.

Exceptions are used to represent abrupt termination —
function calls and loops are wrapped in a try-catch block and
the C statements return, break, and continue are imple-
mented by assigning appropriate value to an auxiliary vari-
able and raising an exception with Throw . The exception is
caught by CATCH , mimicking an abrupt termination of the
TRY block.

Verification Specifications for SIMPL programs are given
as Hoare triples, where pre-conditions and post-conditions
are stated by Isabelle expressions. The SIMPL environment
provides a VCG for partial correctness that converts those
Hoare triples to a set of higher-order formulas that are eas-
ier to reason about. The Hoare triples are represented by
statements of the form Γ `/F P cQ,A, where P is the
pre-condition, Q is the post-condition for normal termina-
tion, A is the abrupt-condition for abrupt termination2, and
F is the set of faults allowed. A soundness proof guarantees
the safe use of the Hoare logic instead of directly reasoning
about the semantics: it states that if such a Hoare triple is
established, then all final states reached through the execu-
tion of the command (according to the semantics) from an
initial state that satisfies the pre-condition, will satisfy the
post-condition and the abrupt-condition.

2 Using Schirmer’s [Schirmer 2006] terminology, we refer to post-
conditions for abrupt-termination due to uncaught exceptions as abrupt-
conditions.

2.2 Verification of Concurrent Code in Isabelle/HOL
Hoare logic may be used to prove that a thread in a concur-
rent program is locally correct, i.e. that it is correct under a
sequential interpretation of its semantics without interleav-
ing of external commands. In order to prove that it is correct
in a concurrent setting, we have to additionally prove that it
is globally correct, i.e. that is is still correct considering all
possible interleavings with other threads in the system.

The Owicki-Gries [Owicki and Gries 1976] method for
the verification of shared-variable concurrent programs ex-
tends the proof method for sequential correctness with the
concept of interference freedom: each thread is first proved
to be locally correct and then each atomic command in each
thread is proved to not interfere with (i.e. invalidate) the local
correctness proof of another thread in parallel. If the proof of
local correctness for a command c requires a pre-condition
P , and cmay be interleaved with another command c′ whose
pre-condition is P ′, then in order to show interference free-
dom, we show that {P ′∧P} c′ {P} holds, i.e. that P remains
true after being interleaved with c′.

In order to satisfy the requirements for interference free-
dom over all threads in a system, it is necessary to store these
intermediate assertions. Unlike for a sequential program, we
may require post-conditions to be arbitrarily stronger than
the weakest pre-condition implied by the Hoare logic. For
this reason, we need to fully annotate the concurrent pro-
gram with intermediate assertions in order to verify its cor-
rectness relative to other threads in the system, in contrast to
a sequential program, for which these properties may largely
be automatically derived and discarded once used.

Hoare-Parallel [Prensa Nieto 2002] is a formal reason-
ing framework in Isabelle/HOL for a simple concurrent
language, including a formalisation of OG. The language
consists of assignment, sequential composition, condition-
als, loops, and two additional statements for concurrency:
Parallel [ac1..acn] and Await b c. The execution is mod-
elled through a small-step semantics; an await statement can
only do a step if its boolean guard b is true, in which case
its body c is executed atomically; a step of a parallel com-
position of programs is a step of any of its thread that is not
blocked on an await. Hoare-Parallel’s abstract syntax is de-
fined using the following mutually recursive datatype:

ac = AnnSeq ac ac |AnnBasic r f | AnnCond b ac ac
|AnnWhile r b r ac |AnnAwait r b c

and
c = Parallel [ac..ac] |Seq c c |Basic f |Cond b c c

|While b r c

The outer layer c performs sequential actions or initiates
a parallel composition, and the inner layer ac within the
parallel composition expresses a thread, with each action
annotated with an assertion r.
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COBEGIN . . . COEND is used as syntactic sugar
for Parallel . Throughout the paper we reuse the Hoare-
Parallel’s Parallel concrete syntax for COMPLX.

3. COMPLX: Syntax and Semantics
Recall that the aim of COMPLX is to enrich SIMPL with par-
allel composition and synchronisation. The Hoare-Parallel
development shows how the OG method can be formalised
in Isabelle/HOL, introducing syntax and the small-step se-
mantics for parallel components. We largely reuse this ap-
proach with two major deviations. Firstly, we do not incor-
porate annotations into COMPLX abstract syntax but rather
represent annotations using a separate datatype. Annotations
and programs will be related in the next section by means of
the OG logic. This way the abstract syntax remains simple
and clear, and we can reuse the existing C-to-Isabelle parser.
Secondly, we do not separate parallel and sequential pro-
grams into different layers, but rather have one datatype rep-
resenting both. These decisions make the soundness proof
more complicated, but allow COMPLX programs to have
nested parallelism, thus lifting unnecessary syntactic restric-
tions.

In this sense, COMPLX just extends the SIMPL abstract
syntax by two new constructors: Parallel cs and Await b c:

c = Skip | . . . |Parallel cs |Await b c

where Parallel takes a list of programs cs that run in par-
allel, and Await takes a set of states b specifying the await-
condition, and a program c representing the await-body. It is
worth noting that with nested parallelism we could use the
canonical binary parallel composition operator p ‖ q instead
of Parallel cs without any effect to semantic expressivity,
since Parallel cs can be represented by folding the binary
operator. On the other hand, an OG-rule for p ‖ q would
lack the possibility to collect and handle interference free-
dom of more than two parallel components within a single
proof obligation, but distribute it in accordance to the fold
strategy. To avoid such complications, Parallel takes a list
of parallel components directly in COMPLX abstract syntax
as shown above.

Next, we extend the small-step semantics of SIMPL to the
new language constructs. As mentioned previously, we use
small-step semantics to allow for reasoning about interleav-
ings between each atomic step. In what follows, we reuse
the SIMPL notation Γ ` 〈c, s〉 → 〈c′, s′〉 meaning that the
configuration 〈c, s〉, comprising a COMPLX program c and
a state s, can be transformed in one step to the configura-
tion 〈c′, s′〉 under the procedure environment Γ. As usual,
we write Γ ` 〈c, s〉 →∗ 〈c′, s′〉 for the reflexive-transitive
closure of the small-step relation.

To adapt the semantics of Parallel cs and Await b c from
Hoare-Parallel to SIMPL’s involved computation model, we
have to take into account several kinds of states: Normal ,
Fault , and Stuck , as well as exception handling. New sit-

uations arise that neither SIMPL nor the Hoare-Parallel for-
malisations had to deal with. For instance, we have to decide
how a parallel program shall behave in the case when one
of its threads raises an uncaught exception. In this case we
allow the parallel program to stop all other threads and exit
with the exception. The rule Parallel-Throw:

Throw ∈ set cs

Γ ` 〈Parallel cs, s〉 → 〈Throw , s〉

captures this behaviour, where set just converts a list to a set.
However, the parallel program may also continue its compu-
tation, delaying the exception, provided by the fundamental
Parallel rule:

Γ ` 〈csi, s〉 → 〈c, s′〉 i < |cs|
Γ ` 〈Parallel cs, s〉 → 〈Parallel cs[i := c], s′〉

where |cs| denotes the length of the list cs, csi the i-th
(counting from 0) element of cs, and cs[i := c] the list cs
with its i-th element replaced by c. Furthermore, a paral-
lel program is allowed to terminate properly only if all its
threads do so. This is described by the Parallel-Skip rule:

∀c ∈ set cs. c = Skip

Γ ` 〈Parallel cs, s〉 → 〈Skip, s〉

Next, for Await b c to be processed in a state Normal x,
the await-condition must be satisfied, i.e. x ∈ b must
hold. Otherwise the execution is blocked. Moreover, the
body of the await c must be a sequential program with-
out any further Await statements or Parallel composi-
tions. Following the Hoare-Parallel notation, we denote this
condition by atom com c. Now, any computation Γ `
〈c,Normal x〉 →∗ 〈Skip,Normal y〉 allows us to derive
Γ ` 〈Await b c,Normal x〉 → 〈Skip,Normal y〉. In other
words, if the await-body terminates in a number of small-
steps without any interleavings then Await b c can make the
same transition in a single step. Here again we have to con-
sider potential exceptions raised by c, in which case we let
Await b c throw an exception as well. These behaviours are
formalised by the following rules, where s = Normal x and
s′ = Normal y.

x ∈ b atom com c Γ ` 〈c, s〉 →∗ 〈Skip, s′〉
Γ ` 〈Await b c, s〉 → 〈Skip, s′〉

x ∈ b atom com c Γ ` 〈c, s〉 →∗ 〈Throw , s′〉
Γ ` 〈Await b c, s〉 → 〈Throw , s′〉

The cases when an execution of the await-body c results not
in Normal y, but in a state s′ other than normal (e.g. Stuck ),
are handled in a similar manner: 〈Await b c,Normal x〉 can
take a single small-step to 〈Skip, s′〉.

4. Owicki-Gries Logic for COMPLX

Verification of programs by directly reasoning about the
semantics of the language is cumbersome and not easily
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amenable to automation. For sequential SIMPL programs,
SIMPL’s Hoare logic allows for weakest pre-condition style
reasoning, generating intermediate assertions, and a small
set of verification conditions that guarantee partial correct-
ness (i.e. correctness in case of termination). For our con-
current COMPLX programs, we create an OG logic, similar
to the one defined in Hoare-Parallel, that breaks down the
correctness of a parallel program into local correctness and
global correctness verification conditions.

4.1 Annotations
As explained in section 3, we use a single datatype to repre-
sent sequential and concurrent programs. Moreover, our OG
annotations are specified using a separate datatype called an
annotation tree, which is isomorphic to the abstract syntax
tree of the COMPLX program. The annotation tree contains
assertions at each step in the program and is represented as
follows:

a = AnnExpr r |AnnRec r a |AnnWhile r r a
|AnnComp a a |AnnCond r a a
|AnnPar l |AnnCall r i

Non-recursive command constructors such as Skip, Throw ,
etc. are annotated via an AnnExpr node, which carries a
single assertion r that is merely a set of states and is also
used for post-conditions of OG rules. AnnRec is used to
annotate recursive commands, such as Await , DynCom or
Guards, that hold another annotated command a. While-
commands require a special annotation type that provides
an assertion for the while, a loop invariant, as well as an
annotation tree for the loop body. Sequential composition
and Catch statements are annotated via AnnComp, where
an annotation sub-tree is provided for each component of the
sub-commands. Similarly, AnnCond is used for conditional
statements, but in addition to the two annotation sub-trees, it
carries an assertion for the conditional statement itself.

AnnPar is used to annotate Parallel statements, hence,
it stores a list l of triples containing an annotation tree, a
post-condition and an abrupt-condition, with one element
in the list per parallel component. The post-conditions and
abrupt-conditions must be specified by the user, because
they are part of the interference freedom requirements. More
specifically, we must show that none of these conditions can
be violated due to other components activity.

Finally, Call statements are annotated with AnnCall ,
which holds an assertion r and a routine index i of type
natural number, specifying which annotation tree to select
from the annotation environment. We return to this at the
end of subsection 4.2.

Despite having a separate datatype for the program and
the annotation tree, COMPLX’s syntactic sugar allows a user
to annotate a program directly. This way we specify asser-
tions at each step of the program, making it easy to keep
track of the assertions when following the control flow of
the program.

For instance, the following is a COMPLX program with
the annotations and program text combined.

x := 0;; y := 0;;
COBEGIN
{|a|} x := 1 {|Qx|}, {|Ax|} ‖ {|b|} y := 1 {|Qy|}, {|Ay|}

COEND

This produces two different trees, one for the program
itself (where Basic f models state update by the function
f , here variable assignment):

Seq (Basic (x update (λ-. 0)))
(Seq (Basic (y update (λ-. 0)))

(Parallel [Basic (x update (λ-. 1)),
Basic (y update (λ-. 1))]))

and a separate annotation tree of the form

AnnComp (AnnExpr {|True|})
(AnnComp (AnnExpr {|True|})

(AnnPar [(AnnExpr {|a|}, {|Qx|}, {|Ax|}),
(AnnExpr {|b|}, {|Qy|}, {|Ay|})]))

In the annotation tree, the trivial, unused assertions for
the sequential parts are automatically added by the syntactic
sugar, removing the burden from the user.

4.2 Owicki-Gries Rules
We define an OG statement of the form

Γ, Θ `/F a c {|Q|}, {|A|}

stating that the COMPLX program c with the annotation tree
a either ends in one of the fault states specified by F , or a
Normal state. If that Normal state is an exception, it must
satisfy the abrupt-condition A, otherwise it must satisfy the
post-condition Q. Γ is the procedure environment, mapping
function names to function bodies, and Θ is the annotation
environment, mapping function names to annotation trees.

To enable weakest pre-condition reasoning when proving
a sequential part of a program (i.e. within an Await or top-
level non-parallel commands), we have another OG state-
ment which takes an extra pre-condition {|P |}:

Γ, Θ `̀/F {|P|} a c {|Q|}, {|A|}

This means that we duplicate every OG rules and the
sequential version of a rule ignores the annotation tree. We
borrowed this idea from Hoare-Parallel, which also has two
versions for each rule. In our case, the annotation tree exists
but is only used as soon as we switch to parallel mode.

Figure 1 illustrates some of the important OG logic rules
for COMPLX. We omitted all the rules used for sequential
reasoning except for SeqParallel which allows switching
from sequential mode (denoted by ) to parallel mode (de-
noted by `). This rule would be used when the program is
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P ⊆ pre (AnnPar as) Γ, Θ `/F (AnnPar as) (Parallel cs) {|Q|}, {|A|}
Γ, Θ `̀/F P (AnnPar as) (Parallel cs) {|Q|}, {|A|}

SEQPARALLEL

|as| = |cs| ∀ i<|cs|. Γ, Θ `/F (pres as[i]) cs[i] (postcond as[i]), (abrcond as[i])

interfree Γ Θ F as cs
⋂

map postcond as ⊆ {|Q|}
⋃

map abrcond as ⊆ {|A|}
Γ, Θ `/F (AnnPar as) (Parallel cs) {|Q|}, {|A|}

PARALLEL

Γ, Θ `̀/F (r ∩ b) P c {|Q|}, {|A|} atom-com c

Γ, Θ `/F (AnnRec r P) (Await b c) {|Q|}, {|A|}
AWAIT

r ⊆ pre a ∀ s∈r. Γ, Θ `/F a (d s) {|Q|}, {|A|}
Γ, Θ `/F (AnnRec r a) (DynCom d) {|Q|}, {|A|}

DYNCOM

Γ, Θ `/F P c {|Q|}, {|A|} r ∩ g ⊆ pre P r ∩ − g 6= ∅ −→ f ∈ F

Γ, Θ `/F (AnnRec r P) (Guard f g c) {|Q|}, {|A|}
GUARD

Θ p = Some as r ⊆ pre as[n] Γ p = Some b n < |as| Γ, Θ `/F as[n] b {|Q|}, {|A|}
Γ, Θ `/F (AnnCall r n) (Call p) {|Q|}, {|A|}

CALL

Figure 1: Some of the important derivation rules of COMPLX.

finished dealing with an initial sequential part and reaches
a parallel composition. Note that the pre-condition {|P |} in
the sequential OG statement disappears in the parallel one,
as long as it implies the pre-condition of the assertion tree.
Also note that the OG rules ensure that the annotation tree
and the program match, e.g. a Parallel statement can only be
proved correct if provided with an AnnPar annotation.

As explained in section 3, COMPLX allows for nested
Parallel statements. Several conditions must be met when
using the Parallel rule to derive a Parallel statement. Ev-
ery component of Parallel must itself be derivable. pres ,
postcond and abrcond respectively return the annotation
tree, the post-condition and the abrupt-condition of an el-
ement of the list in AnnPar described earlier. While the
intersection of the post-conditions of all components must
imply the post-condition of the overall Parallel , for abrupt-
conditions only one of the components must satisfy the
abrupt-condition of the Parallel . This is explained by the
fact that exceptions can interrupt other components. The key
requirement for derivability of Parallel is interfree which
specifies interference freedom — we return to this definition
in next section.

A derivation of Await b c requires a sequential derivation
of c with the assertion r combined with the condition b as
pre-condition. In addition, the command c must be deprived
of Parallel and Call statements since they cannot be atomic
and thus are forbidden in Await . This restriction is achieved
by the atom-com predicate and guarantees that a program
does not end in a Stuck state because of a non-atomic oper-
ation found in an Await .

Dynamic commands are functions that produce a com-
mand from a state. They provide a general mechanism to
model programs that need to introspect their state. For in-
stance, they could be used to model self-modifying code.
However, for C verification their use is limited to restoring
the value of local variables when a function is called. We

elaborate on this in section 6. In order to be able to reason
about dynamic commands in OG, we must be able to anno-
tate them. Since program annotations are static, they must
not depend on the state of the program. Thus our framework
restricts their use to dynamic commands that can be anno-
tated statically. DynCom is derivable so long as an annota-
tion tree a can be provided and that it allows derivation of the
command produced by the dynamic command d for any state
allowed by the assertion on DynCom . An additional require-
ment for the annotation tree to be valid is that its first asser-
tion must be allowed by the assertion on DynCom (i.e. r).
pre a returns the first assertion of the annotation tree a.

The Guard rule is straightforward. For the command
Guard f g c, if the guard condition g is not satisfied, the fault
f must be allowed by the fault set F of the OG statement.
The rule asserts this by requiring that, when the fault is not
allowed by the OG statement, the assertion r allows more
states than the ones that do not satisfy the guard.

The last interesting rule is Call . The annotation environ-
ment Θ stores a list of annotation trees per function. Since
a function can be called from multiple places and each call
may require a different set of assertions, multiple annotation
trees of the same function may be kept in the environment.
AnnCall provides a routine index to select which tree to use.
When deriving Call , the annotation environment needs to be
correctly initialised such that the requested annotation tree
matches the function body. This way a derivable program
cannot end in a Stuck state because of an undefined function
call. Ideally, this index would be computed by the translation
from C to COMPLX.

4.3 Interference Freedom
As explained in section 2, interference freedom states that,
for every atomic command c extracted from parallel com-
ponents, all the commands it may be interleaved with have
their assertions preserved by the execution of c. COMPLX’s
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interfree definition follows the same principle as Hoare-
Parallel’s, but with several important differences.

First, in order to support function calls we extract asser-
tions and atomics using relations instead of functions. Ex-
tracting assertions and atomic commands from a program
requires going through every statement including statements
inside function bodies. To avoid divergence, the extraction
functions must keep track of which functions have been pro-
cessed. The resulting function must maintain a state and
becomes hard to use when induction is required. In addi-
tion, COMPLX’s separation between program and annota-
tions makes it harder to extract assertions and atomics using
a function. Since the annotation tree and the program struc-
ture are not synchronised by construction, a function would
have to be partial or undefined if the annotation tree does not
match the structure of the program. To address these issues,
in COMPLX we use relations instead of functions to extract
assertions and atomics. Using a relation, any mismatch be-
tween annotation tree and program structure simply results
in the relation not holding, and the infinite-recursion prob-
lem goes away since the relation does not have to terminate.
More importantly, by using a relation we can describe an in-
finite set of assertions/atomics, which is specifically required
for DynCom .

Second, COMPLX’s semantics is significantly more com-
plicated than Hoare-Parallel’s. In particular, as the COMPLX
semantics executes the program, it reduces the program to a
final command (i.e. Skip or Throw ) which denotes termina-
tion of execution. This is visible on most of the small-step se-
mantics rules presented in section 3, such as Parallel-Throw,
Parallel-Skip... Consequently, Skip and Throw commands
have two purposes: they denote final configurations, and they
also are legitimate commands that can be found in any given
program. In the latter case, they must be annotated manu-
ally. However, in the former case the COMPLX framework
must automatically generate assertions for them. Typically,
the assertion on a Skip will be the assertion of the next com-
mand, or, if it is the last command of the program, the post-
condition. Hence, the relation that extracts assertions takes
the post-condition and the abrupt-condition of the program
and generates the appropriate assertions for every semantics
rule that leads to a final configuration.

Finally, since COMPLX allows nested Parallel state-
ments, assertions need to be collected recursively on each
of the parallel components.

4.4 VCG
In order to automate the creation of verification conditions
for programs in COMPLX, we ported and extended Hoare-
Parallel’s VCG. We added support for several constructors,
including Catch , Call , Guard and DynCom . This involved
writing Isabelle/HOL tactic rules to decompose the deriva-
tion of these commands and convert interference freedom
goals to OG statements showing that assertions are pre-
served. As in Hoare-Parallel, most of the generated proof

obligations get easily discharged using Isabelle/HOL au-
tomation. This makes our framework ideal for concurrency
verification as finding the right correctness assertions should
be the bulk of the work for verifying a concurrent program.

5. Soundness Proof
Verification using logic rules and a VCG is much more effi-
cient than reasoning directly with the semantics, but it needs
to be proven sound if we want to preserve the same level
of trust. In this section we outline our proof that COMPLX’s
OG rules presented in section 4 are sound with respect to
the semantics presented in section 3. Namely we prove, in
Isabelle/HOL, the following theorem (identical to SIMPL’s
soundness theorem):

Γ, Θ `/F a c {|Q|}, {|A|} =⇒ Γ |=/F (pre a) c {|Q|}, {|A|}
This states that any Hoare triple3 that is derivable from the
OG-rules is valid, where validity is defined in terms of the
small-step semantics (below e.g. Normal ‘ {|P |} denotes the
image of {|P |} under Normal , embedding this {|P |} into
extended states):

Γ |=/F {|P|} c {|Q|}, {|A|} ≡
∀ s t c ′.

Γ ` (c, s)→∗ (c ′, t) −→
final (c ′, t) −→
s ∈ Normal ‘ {|P|} −→
t /∈ Fault ‘ F −→
c ′= Skip ∧ t ∈ Normal ‘ {|Q|} ∨ c ′= Throw ∧ t ∈ Normal ‘ {|A|}

That is, a program c is called valid if final states of any of
its full executions without any faults from a state s satisfying
P , satisfy the relevant post-condition. More precisely, if c
executes, after multiple steps, into either Skip or Throw
(denoted by final ) then the final state t satisfies Q if c′ is
Skip and A if c′ is Throw . Note that a sequence of small-
steps cannot reach both, Skip and Throw . It is also worth
noting, that as a consequence of separating annotations from
programs, the notion of validity is purely semantical, thus
completely independent from annotations which are only
needed for derivability.

We now outline the main challenges in the soundness
proof that proceeds by induction on the structure of the OG-
rules. For the sake of brevity, in the following we will focus
on the cases when all considered states are Normal : apart
from these we get several corner cases, such as that guards
can fail only within specified Fault states or absence of un-
defined function calls. These are, however, of technical na-
ture and do not contribute much to the structure and com-
plexity of the overall proof.

All OG-rules, beside those for parallel composition and
synchronisation, retain their SIMPL form, such that in these
cases we proceed similarly to the sequential setting. This
changes, of course, as soon as we reach the parallel com-
position and await cases.

3 Technically, this is more a Hoare quadruple but we still use the more
traditional term of triple.
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The major challenges arise in the proof of the paral-
lel case, i.e. when c = Parallel cs . We can assume all the
premises of the OG-rule PARALLEL (see Figure 1), in partic-
ular that interference freedom holds for the parallel compo-
nents cswith respect to the annotation. Moreover, we can as-
sume Γ ` 〈Parallel cs,Normal x〉 →∗ 〈c′,Normal y〉 with
x satisfying the annotated pre-condition and c′ being Skip
or Throw . What we need to prove is that y satisfies the rele-
vant post-condition. For this we induct on the closure of the
small-step relation, and the challenge is to show that all the
assumed conditions (from the premise of the OG rule, e.g.
interference freedom) are preserved by each execution step
(to be able to apply the induction hypothesis). This is a chal-
lenge because each step ‘consumes’ a part of the program,
which needs to be reflected in the annotation tree. We cap-
ture this by a separate lemma, where we collect all the neces-
sary properties relating pre- and post-configurations of any
small-step. That is, if Γ ` 〈c,Normal x〉 → 〈c′,Normal y〉
holds for any c, x, c′, y, and the program c is derivable with
an annotation structure a by the OG-rules such that s satis-
fies the annotated pre-condition, then we can find an anno-
tation structure a′ such that c′ is derivable with a′, y satis-
fies the pre-condition in a′ and, moreover, any assertion or
atomic of a′ is an assertion or atomic of a, respectively. Since
the program c is an arbitrary COMPLX program, we induct
on the structure of c. Here again, only the await and paral-
lel cases are more involved. For await we can rely on the
canonical restriction that the body of any Await-construct
is purely sequential, i.e. a SIMPL program in fact. In the
parallel case, however, we have to deploy our interference
freedom assumption to show that any post-state of the whole
parallel construct will satisfy annotated conditions regard-
less of which of the constituting components does its small
step. To this end we need to establish a connection between
the small-step semantics and atomics as follows. Any pro-
gram transition Γ ` 〈c,Normalx〉 → 〈c′,Normal y〉, where
Normal x satisfies the annotated pre-condition and x 6= y,
can only happen due to an atomic subcomponent cc of c that
performs the step Γ ` 〈cc,Normal x〉 → 〈Skip,Normal y〉.
Now, the interference freedom property states that each of
such atomic steps preserves assertions of any component
other than the one that performs the step. This gives us the
preservation we need to carry assumptions over single steps
of execution.

For the proof of the top-level Await case we similarly
can assume Γ ` 〈Await b cc,Normal x〉 →∗ 〈c′,Normal y〉
with x satisfying the annotated pre-condition, c′ being Skip
or Throw , and Await b cc being derivable by the OG-rules.
Moreover, by induction hypothesis we also know that the
await-body cc is valid. On the other hand, from the se-
mantics of Await we can conclude that y can only be ob-
tained by a certain number of small-step transformations
of 〈cc,Normal x〉 until a Skip or Throw configuration is
reached, establishing the desired result.

6. Case Study
We used our COMPLX framework to reproduce the proof
of correctness of a few examples of concurrent algorithms
that had been verified within Hoare-Parallel, including the
proof of Peterson’s solution to the mutual exclusion prob-
lem [Prensa Nieto 2002]. Our proofs can be found on-
line [COMPLX] and were very easily achieved once our
framework was complete. This shows that COMPLX is ro-
bust and backward compatible with Hoare-Parallel, as none
of the proofs required extra work. The VCG generates ap-
proximately the same number of proof obligations and dis-
charging them takes a similar processing time. These exam-
ples, however, did not exercise any C-specific features.

To demonstrate the practicality of our framework in veri-
fying concurrent C code, we created an example (also avail-
able online [COMPLX]) of a concurrent C program that ex-
ercises the specific features that COMPLX supports. In par-
ticular, our example uses exceptions, guards and function
calls, all of which are not supported by Hoare-Parallel.

In our example, we extracted manually the program
model from the C source code. The C program and the COM-
PLX program are both less than 20 lines, and the whole
model is ≈230 lines of Isabelle/HOL definitions, includ-
ing the complete set of assertions used to annotate the pro-
gram and verify its correctness. The VCG generates 688
conditions and most of them are easily discharged using Is-
abelle/HOL automation. Once again, the bulk of the work
lies in finding the right correctness assertions.

The aim of the program is to compute the combined sum
of all the elements of multiple arrays. It does this by running
a number of threads in parallel, each computing the sum of
elements of one of the arrays, and then adding the result to
a global variable gsum shared by all threads. We restrict
the example to two arrays and threads, but this could be
generalised: we would then just need to generate accordingly
more copies of the function sumarr , pairwise disjoint in
local variables, such that each thread can invoke its own copy
of sumarr . The correctness statement for this program is:

Γ, Θ |`̀/F {|precond|}
COBEGIN

SCHEME [0 ≤ m < 2]
call-sumarr m
{|local-postcond m|}, {|False|}

COEND
{|postcond|}, {|False|}

The SCHEME syntax models a parametric number of par-
allel programs. Here we use it to model the creation of
two threads running concurrently, each calling the func-
tion sumarr . The post-condition (definition not shown)
states that the global variable gsum is indeed equal to
the combined sum of all elements of all arrays. Since the
function sumarr cannot terminate with an exception, the
abrupt-condition is false, which forces us to prove that all
exceptions are caught. As explained in section 4, prov-
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ing interference freedom also requires that we specify the
post-condition (local-postcond) and abrupt-condition (false
again) of the parallel component.

To begin we explain the state of the program, then how we
model function calls, and finally how the sumarr function is
defined.

State The state of the program is modelled with the
following record:

record sumarr state =
(* function arguments *)
tarr :: “routine⇒ word32 array”
tid :: “routine⇒ word32”
(* local variables of threads *)
ti :: “routine⇒ word32”
tsum :: “routine⇒ word32”
(* global variables *)
garr :: “(word32 array) array”
gsum :: word32
gdone :: word32
glock :: nat

We now explain the need for the routine argument. Major
challenges arise when attempting to verify parallel programs
that make use of function calls. In a sequential context,
a call to a function named f in a state s means that we
just lookup the body of f in the procedure environment Γ,
continue with the execution of Γf in the state s and return
to the calling routine afterwards. In a concurrent setting,
however, this execution could be interleaved with another
call of f invoked by a different thread. Thus, if Γf uses some
local variables, the model of the overall parallel program
might not behave as in reality, as both invocations of f can
interfere on the same local variables. Therefore, in our state,
function arguments and local variables are modelled as a
mapping from routine index to value. This allows concurrent
executions of a function to use different instances of the
variables.

In contrast, global variables are shared by all threads, so
they are not protected by a routine index. We use garr to
store two arrays of machine 32-bit words that will be passed
to each thread via argument tarr . The global variable gsum
is used to store the total result, whereas tsum stores the
local result used by each thread. The bit-field gdone is used
to indicate whether a thread has finished its computation.
Finally, the threads use glock as a mutually exclusive lock in
order to protect the shared variables gsum and gdone .

For the remainder of this section, {|...|} denotes the places
where assertions are required. To improve the readability
and to highlight the similarity between input source and
COMPLX model, we display our models without most of the
assertions.

Function calls We define call-sumarr as shown in Fig-
ure 2. The parameter m is the routine index (from the

call-sumarr m ≡
{|local-precond m|} CALLX (sumarr-init m)
{|sumarr-precond m|} ( ′′sumarr ′′, m) m
(sumarr-restore m) (λ- -. Skip)
{|sumarr-restore-post m|} {|sumarr-return-post m|}
{|False|} {|False|}

Figure 2: Annotations for the function sumarr .

callx init body restore return =
DynCom (λs. TRY

init;; body
CATCH

restore s;; THROW
END;;
DynCom (λt. restore s;; return s t))

Figure 3: Argument passing and scoping for function calls.

SCHEME ) used to specify which copy of a local variable is
accessed. CALLX is syntactic sugar for calling a function
while passing arguments and implementing scoping, i.e. sav-
ing and restoring local variables. The computation is done
by a function callx shown in Figure 3 (CALLX combines it
with annotations, as we will explain shortly). The process of
calling a function involves several steps:

1. Saving the value of local variables by keeping a copy of
the state.

2. Initialising local variables and function arguments by
updating the state.

3. Executing the function body.

4. Restoring the value of local variables using the copy of
the state.

5. Extracting the return value of the function from the state.

Saving and restoring local variables is required to support
recursive functions and is equivalent to setting up and tearing
down the stack frame in C. Steps 1 and 5 of function calls
are both implemented using DynCom as seen in Figure 3.

The first DynCom is used to keep a copy of the state
that is later used for restoring local variables. As we can see,
callx is complicated by exceptions that may cross function
boundaries. When an exception is uncaught, the local vari-
ables must first be restored before the exception is propa-
gated.

Steps 2 and 4 use the provided functions init and restore.
In our example, there are two arguments being passed to
sumarr , the array tarr and the thread identifier tid . The
initialisation and restore functions are:
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sumarr-init m ≡
λs. s(|tarr := (tarr s)(m := (garr s)[m]),

tid := (tid s)(m := m + 1), ti := (ti s)(m := undefined),
tsum := (tsum s)(m := undefined)|)

sumarr-restore m ≡
λs t. t(|tarr := (tarr t)(m := tarr s m), tid := (tid t)(m := tid s m),

ti := (ti t)(m := ti s m), tsum := (tsum t)(m := tsum s m)|)

To reason about function calls in OG, the user also has
to provide assertions for every step in the control flow of
callx . To facilitate this, there is an equivalent helper function
ann callx . The arguments of the CALLX statement are
then the commands for dealing with argument passing and
scoping, the corresponding annotations, and the function
name and index used when looking up the procedure and
annotation environment.

One restriction of our current implementation of CALLX
is that both initialising and restoring local variables is per-
formed in one step. This does not match the reality of C,
which uses multiple instructions and can potentially be in-
terleaved. We believe that it would be relatively straightfor-
ward to change our framework to use multiple steps, one for
each local variable. Additionally, we should be able to create
syntactic sugar that hides many of these details from the end
user.

In Figure 2, local-precond corresponds to the first asser-
tion of the parallel component, whereas summar-precond is
the assertion once the arguments and local variables have
been initialised. The other assertions describe the state be-
fore restoring local variables (summar-restore) and before
extracting the return value from the state (summar-return),
for normal termination of the function. For abrupt termina-
tion these assertions are false, as the function sumarr cannot
terminate with an exception.

The sumarr function Returning to our case study, Fig-
ure 4a shows the body of the sumarr function, as it would
be implemented in C. The pointer tarr refers to the array of
unsigned integers that is being summed and tid is a thread
identifier of value 1 or 2 depending on the thread.

The loop calculates the sum of each element of the ar-
ray and at each iteration if the sum or the current element
exceeds MAXSUM, we break out of the loop and cap tsum
at MAXSUM. This prevents potential word overflows, as-
suming that NSUM and MAXSUM are chosen appropriately.
After the loop, we invoke the lock and unlock functions to
protect the global variables gsum and gdone. In the C code,
lock and unlock are implemented using a mutex.

Figure 4b shows the COMPLX model in Isabelle/HOL of
this function. As seen in subsection 4.1, COMPLX’s syntac-
tic sugar allows the program to be directly annotated. Addi-
tionally, concurrent executions of functions require different
instances of any local variables. Therefore, in Figure 4b we

parametrise sumarr with m, which is used as a routine in-
dex to select which local variables to use.

The first two lines initialise the local variables tsum and
ti to zero. Note that a for-loop is trivially converted to a
while-loop by moving the loop counter update to the end
of the loop body. The while-loop is wrapped inside a try-
catch statement because COMPLX, just like SIMPL, uses
exceptions to model early exit of a loop. Hence, the break
statement present in the C code is replaced with a Throw in
COMPLX, and the CATCH block only contains a Skip, i.e.
do nothing. This means that when the exception is thrown, it
has the effect of breaking out of the loop.

One of the most important aspects of verifying C code
is proving the absence of behaviours undefined by the C
standard. In both SIMPL and COMPLX undefined behaviours
are usually specified using guards. For instance, in our case
there could be undefined behaviour if an invalid pointer is
dereferenced. Therefore, every time a pointer is accessed it
must be protected by a guard forcing us to prove that the
pointer is indeed valid.

In Figure 4b, since tarr is a pointer, every access is
guarded with an array-in-bound check which guarantees
that tarr is a valid pointer and that the index ti is less
than the length of the array. If the guard is not satisfied the
program returns the fault InvalidMem indicating an invalid
memory access. Having explicit guard commands in COM-
PLX also allows us to reason about concurrent programs that
can actually end in a specific Fault state. For instance, we
are able to prove that in some circumstances a program is
guaranteed to result in a Fault state.

After the loop, the model calls the function lock , to ac-
quire the global mutex that protects the shared variables
gsum and gdone . Since lock and unlock only access a
global variable (the mutex) and do not take any arguments,
their call does not require saving and restoring of local vari-
ables. The definition of lock and unlock follows:

lock m ≡ {|...|} AWAIT glock = 0 THEN glock := 1 END

unlock m ≡ {|...|} glock := 0

The mutex is modelled by using glock , a global variable
set to 1 when the lock is held and 0 otherwise. The semantics
of Await guarantees that only one thread can be inside the
lock at a time.

Summary COMPLX was designed to reason about an ac-
curate representation of the C code, without requiring that
programmers radically change their programming style and
habits. A key feature of COMPLX is the syntactic sugar
which allows annotating programs directly on the program
model, despite having a separate datatype for annotation tree
and program. This gives us the best of both worlds: a user-
friendly framework for annotating program and a neat lan-
guage abstract syntax which is not cluttered with irrelevant
annotations. The lack of exceptions in Hoare-Parallel would
force reimplementing our code to avoid having a break
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void sumar r ( unsigned i n t ∗ t a r r ,
unsigned i n t t i d )

{
unsigned i n t t i ;
unsigned i n t tsum ;

tsum = 0 ;
f o r ( t i = 0 ; t i < NSUM; t i ++) {

tsum += t a r r [ t i ] ;
i f ( tsum >= MAXSUM | |

t a r r [ t i ] >= MAXSUM) {
tsum = MAXSUM;
break ;

}
}
l o c k ( ) ;
gsum += tsum ;
gdone |= t i d ;
un lo ck ( ) ;

}

(a) C code

sumarr m ≡
{|...|} tsum := tsum(m := 0);;
{|...|} ti := ti(m := 0);;
TRY {|...|} WHILE ti m < NSUM INV {|...|}

DO {|...|} (InvalidMem, {|array-in-bound (tarr m) (ti m)|}) 7−→
{|...|} tsum := tsum(m := tsum m + array-nth (tarr m) (ti m));;
{|...|} (InvalidMem, {|array-in-bound (tarr m) (ti m)|}) 7−→
{|...|} IF MAXSUM ≤ tsum m ∨ MAXSUM ≤ array-nth (tarr m) (ti m)
THEN {|...|} tsum := tsum(m := MAXSUM);;

{|...|} THROW
ELSE {|...|} SKIP
FI;;
{|...|} ti := ti(m := ti m + 1)

OD
CATCH {|...|} SKIP END;;
{|...|} SCALL ( ′′lock ′′, 0) m;;
{|...|} gsum := gsum + tsum m;;
{|...|} gdone := (gdone OR tid m);;
{|...|} SCALL ( ′′unlock ′′, 0) m

(b) COMPLX model

Figure 4: The C code and matching COMPLX model of our case study

statement in the middle of the loop. Furthermore, support
for guard statements is critical to enable C verification, be-
cause they ensure that the semantics of the code is defined.
Finally, supporting function calls is a key requirement for
our framework, which we intend to use on larger scale veri-
fication projects.

7. Related Work
Logics for Concurrency Over the years, many logics were
developed for reasoning about concurrency, the oldest and
most straightforward of which is OG. OG provides, however,
no modular way to reason about memory and quickly leads
to an explosion in the number of verification conditions
that need to be proven. Rely-Guarantee (RG) [Jones 1983],
Concurrent Separation Logic (CSL) [OHearn 2007], and a
number of more recent combinations and extensions of these
(e.g. [Vafeiadis 2008; da Rocha Pinto et al. 2014]) have been
developed since to overcome the modularity issues of OG.
The separation-based logics typically rely on ownership over
shared state: threads need to lock their accesses to shared
state and ownership can be transferred along acquire/release
atomic memory accesses.

In recent work [Andronick et al. 2015, 2016], we found
that using the simple OG method is suitable for our reason-
ing of interrupt-induced concurrency in racy OS code. In that
code, the OS API functions, the scheduler and the interrupt
handlers all concurrently modify shared variables without
any synchronisation (in order to meet stringent low-latency
requirements). The correctness argument needs to rely on
fine-grain assertions at these sharing points; it cannot rely
on some atomicity or ownership argument. We used OG (at

the simple high-level language IMP) and we introduced a
technique that we called await-painting, essentially painting
our program with Await statements to limit the concurrency
to places where it actually occurs. This technique allowed us
to proof-engineer an Isabelle/HOL tactic that automatically
discharges most of the verification conditions generated by
OG. We successfully used the tactic to verify an abstract
model of the eChronos OS scheduling behaviour. COMPLX
will enable us to extend this verification to the C implemen-
tation.

In COMPLX, just like SIMPL, the notion of state is ab-
stract: we propose a generic language for reasoning about
concurrent imperative code. Modelling memory is orthogo-
nal to the work done in this paper. The C-to-Isabelle parser
defines a concrete notion of state on top of SIMPL which, for
instance, can be reasoned about using separation logic [Tuch
et al. 2007]. Building a framework in the spirit of FCSL
(fine-grained concurrent separation logic) [Nanevski et al.
2014; Sergey et al. 2015] on top of the COMPLX language
would be interesting future work.

Recent work showed that, as is, OG is unsound for weak
memory models but can be extended in a sound logic by
strengthening its interference-freedom condition [Lahav and
Vafeiadis 2015]. We could look at a similar approach if we
want to support weak memory models in the future.

Tools for Verification of Concurrent C We focus here
on tools that allow the verification of specific properties
or specifications, rather than e.g. static analysers that can
only detect specific classes of errors. VCC [Cohen et al.
2009] is an industrial-strength verification environment for
low-level concurrent system code. It is an assertional, auto-
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matic, deductive code verifier for C, where specifications in
the form of function contracts, data invariants, and loop in-
variants are added to the C code to guide VCC. From the
annotated program, VCC generates verification conditions,
which it then tries to discharge using the automatic theo-
rem prover Z3 [de Moura and Bjørner 2008] or through the
Boogie verifier [Barnett et al. 2006]. VCC has been used,
among others, to verify the Microsoft Hyper-V hypervisor
and has also been used in the Verisoft XT project [Verisoft
XT]. Moreover, Isabelle/HOL was used as a backend to
VCC for the verification of certifying graph algorithms from
LEDA [Alkassar et al. 2014]. When the C-to-Isabelle parser
was open-sourced, the LEDA verification project switched
to only using SIMPL and the C-to-Isabelle parser and redid
their verification completely within Isabelle/HOL, in order
to provide higher trust guarantees [Noschinski et al. 2014;
Rizkallah 2015]. Unlike an LCF based theorem prover (e.g.
Isabelle/HOL or Coq [Bertot and Castéran 2004]), VCC re-
lies on a large trusted computing base that includes the en-
tire VCC engine and Z3 [Noschinski et al. 2014; Rizkallah
2015]. Similar to VCC, VeriFast [Jacobs et al. 2010] relies
on Z3. We would like to enable reasoning about concurrency,
within an LCF based theorem prover in order not to compro-
mise on trust.

A number of recent efforts provide tools to reason about
concurrency in Coq. Most of these efforts are based on
CSL and primarily focus on modular reasoning about non-
racy shared memory. The Verified Software Toolchain [Ap-
pel 2012] provides machine-checked guarantees that the
CSL assertions about concurrent C code with primitive lock
operations hold down to the machine-language program.
Iris [Jung et al. 2015, 2016] is a general and expressive logic
with a simple set of verified primitive mechanisms and proof
rules for modular reasoning about shared memory. Once
again, we are targeting potentially-racy high-performance
code for which OG fine-grain assertions are well-suited.

8. Conclusion and Future Work
In this paper we have presented our COMPLX framework
for sound verification of concurrent imperative code in Is-
abelle/HOL. We have emphasised how we use the Owicki-
Gries method in order to extend the SIMPL tool to cope
with concurrency. This way our framework inherits support
for function calls and exception handling from SIMPL. The
presented case-study illustrates how these features can be
utilised in practical verification.

Future work includes more proof engineering to increase
ease of use, integration with the C-to-Isabelle parser, and
definition of more concrete notions of states.

With the work presented here, we bridge the gap between
the verification of abstract algorithms and that of their imper-
ative implementations. We plan to extend the C-to-Isabelle
parser to translate C code into COMPLX code to provide
guarantees for concurrent low-level C code, with the aim

to verify concurrent operating systems, such as the inter-
ruptible eChronos embedded operating system or multicore
seL4.
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