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Abstract. Landuaer and Redmond’s Lattice of Information was an early
and influential formalisation of the pure structure of security [8]: a partial
order was defined for information-flow from a hidden state. In modern
terms we would say that more-security refines less-security. For Lan-
dauer, the deterministic case [op. cit.], the refinement order is a lattice.
Very recently [9, 3] a similar approach has been taken to purely proba-
bilistic systems and there too a refinement order can be defined; but it
is not a lattice [12].
In between deterministic and probabilistic is demonic, where behaviour
is not deterministic but also not quantifiable. We show that our own ear-
lier approach to this [15, 16] fits into the same pattern as deterministic
and probabilistic, and illustrate that with results concerning composi-
tionality, testing, soundness and completeness. Finally, we make some
remarks about source-level reasoning.

1 A deterministic lattice of information — the original

1.1 Historical introduction and intuition

Landauer and Redmond proposed in 1993 A Lattice of Information [8] for de-
terministic channels that accept hidden input and produce visible output. The
“information” in Landauer’s title is what the channel’s output tells an observer
about the input that we are trying to hide from her. 1

Definition 1. Deterministic channel Given non-empty input space I
and output space O, a deterministic channel is a total function from I to O. For
channel C: I→O, an input i in I produces an output C(i) in O. 2

With “deterministic” we emphasise that for any input i the channel C always
outputs the same output o, that is o = C(i).

Take for the input space I the letters {A,B,E,W}, and let the output space
O1 be {vowel,cons} for “vowel” or “consonant”; then define channel C1: I→O1

in the obvious way. Define another channel C2: I→O2 whereO2 is {early, late}
for “early” or “late” in the alphabet. These two channels C1,2 have different out-
put spaces O1,2 (but the same input space) because they are observing different

1 We use the feminine she/her consistently for adversaries. Plural we/us is used for
the designers or users of programs, or the readers of this article; and neuter “it” or
plural “they” is used for third parties.



things. We compare them therefore only wrt. the information they release about
their inputs: the precise values of their outputs will be seen to be irrelevant.

Each channel induces a partition on I via the kernels of the functions C1,2,
as shown in Fig. 1, where the partitions’ cells show just which elements of I can
be distinguished by an observer who sees the output of the channel: two input
elements can be distinguished by an observer just when they are not in the same
cell. Thus Fig. 1(a) shows that B,W cannot be distinguished by an observer of
C1’s output, because they are both consonants; but Fig. 1(b) shows that B,W
can be distinguished by C2, because B is early but W is late.

W

A B

E

(a) vowel/cons partition for C1
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(b) early/late partition for C2

Fig. 1. Partitions induced on I by the channels C1 and C2
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(b) The meet is finer than both.

Fig. 2. Induced partitions
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Fig. 3. The join is coarser
than both C1,2.

In general we write EI for the set of parti-
tions of I; clearly EI is a subset of the powerset
PI of I, and there is partial order that relates
two partitions in EI just when one can be formed
from the other by dividing cells into smaller pieces
(or, in the opposite direction, by merging cells).
It is a lattice because both meet (greatest lower
bound) and join (least upper bound) are defined.
The meet can be visualised by thinking of par-
titions as “cookie cutters”, with set I being the
“dough” and both partitions applied, one on top
of the other: the pieces formed by both cookie-cuts
together determine the cells of the meet, shown for
C1 and C2 in Fig. 2. It is the least informative channel that reveals as much
about the input as each of C1,2 does: for example the meet must distinguish A,B
because C1 does, and it must distinguish B,W because C2 does. Complemen-
tarily, the join is the most informative channel that reveals no more than C1,2

and is shown in Fig. 3: in this case it is the channel that reveals nothing. 2 Note
that none of these constructions –neither the partial order, nor the meet/join–
require details of output sets O1,2; only the partitions induced by the channels
are important.

In software engineering the refinement order relates specifications S to im-
plementations P just when P is as good as or better than S according to precise
criteria set by the user. The available criteria are determined carefully, even
“legally”, beforehand and can be seen as the terms of reference available for
writing contracts between user and supplier. Normally, program-refinement is
written S v P , that specification S is refined by implementation P . Since here
our focus is on security, we consider “revealing less” to be better than “revealing
more”, so that we would write (exhaustively) for the examples above

Fig. 2(b) v Fig. 1(a) Fig. 1(a) v Fig. 3
Fig. 2(b) v Fig. 1(b) Fig. 1(b) v Fig. 3
Fig. 2(b) = Fig. 1(a) u Fig. 1(b) Fig. 3 = Fig. 1(a) t Fig. 1(b) .

This shows (unfortunately) that the mathematical term “partition refinement”
(finer cells) and the computer-science term “program refinement” (fewer distinc-
tions made, less information revealed, better for the user) go exactly in opposite
directions. We follow the Computer-Science convention.

1.2 Definition of secure refinement for channels

The definition of secure refinement for deterministic channels is that for S: I→OS

and P : I→OP we have SvP just when there is a refinement-functionR:OS→OP

2 Although both C1 and C2 distinguish A,W, their join cannot. Because C2 does not
distinguish A,B, the join cannot; it can’t distinguish B,W because C1 does not: by
transitivity therefore the join must regard A,W as equal. The same applies to E,W.



such that P=R◦S. The relation (v) is reflexive and transitive (obviously), and
it is antisymmetric. Note that channels can be in refinement even when their
output spaces differ.

The intuition for its definition is that having such an R means that P ’s
output cannot tell you anything you do not already know, at least implicitly,
from the output of S: that is if you know oS (i.e. S(i)), then you do not need
to run P to know oP as well (i.e. P (i)) — it is simply R(oS), i.e. determined by
the result oS you already have, precisely because P=R◦S.

vowel consonant

A TRUE false

B false TRUE

E TRUE false

W false TRUE

�1

 
input

output

input cells induced by output observations

Fig. 4. Matrix representation
of a deterministic channel

An equivalent formulation of re-
finement is to see S, P,R as Boolean
matrices, with for example Si,o = true
just when S.i=o, as in Fig. 4. 3 Be-
cause the channels S, P are deter-
ministic (and total) the corresponding
matrices have exactly one true in each
row, and the induced cells are given
by the matrix columns, with true en-
tries identifying members of the cell
corresponding to that column. Simi-
larly because R represents a function,
it too has exactly one true in each
row. With matrices the formulation of
refinement is that if channel S is a Boolean I×OS matrix and channel P is a
Boolean I×OP matrix then SvP just when there is a Boolean OS×OP matrix
R such that P=SR. 4

Fig. 5 shows how the meet of C1,2 in Fig. 2(b) is refined in this style, i.e
by a matrix R to C1. Notice that the column-labels 0, 1, 2 of the meet (and the
rows of the refinement matrix, in the middle) have no external significance: this
emphasises that it is the partition of the input cells, alone, that indicates the
information flow induced by a channel. Fig. 6 uses a different matrix R′ to refine
the same meet to C2 instead.

0 1 2

A TRUE false false

B false TRUE false

E TRUE false false

W false false TRUE

�1

vowel consonant

0 TRUE false

1 false TRUE

2 false TRUE

�1

vowel consonant

A TRUE false

B false TRUE

E TRUE false

W false TRUE

�1

× =
The column labels 0,1,2 for the matrix representing C1 u C2 are chosen arbitrarily.

Fig. 5. Refinement of C1 u C2 to C1.

3 For matrix M indexed by r, c we write Mr,c for the value in row r and column c.
4 We write SR for the matrix multiplication of S and R.



0 1 2

A TRUE false false

B false TRUE false

E TRUE false false

W false false TRUE

�1

× =
early late

A TRUE false

B TRUE false

E TRUE false

W false TRUE

�1

early late

0 TRUE false

1 TRUE false

2 false TRUE

�1

Fig. 6. Refinement of C1 u C2 to C2.

1.3 Testing, soundness and completeness

In §1.2 the refinement function, eqv. matrix, is a witness to the refinement SvP ,
showing not only that the partition cells induced by S can be merged to form
the cells of P , but actually how to do it; the existence of such an R is in fact
refinement’s definition. In principle this gives a method for constructing im-
plementations P from specifications S, a “security by design” approach where
suitable matrices R guide the programmer’s efforts.

The complementary problem however is how a customer should convince a
court that S 6vK, that when he bought S but got K he was cheated. 5 It’s not
practical to go through all the (infinitely many) potential R matrices and show
the court, for each one, that P 6=SR. 6 Just as R provides a witness for (v), we
need a witness for ( 6v) too.

In this deterministic setting a witness for ( 6v) is a subset ι of I such that
some cell of K is a subset of ι but no cell of S is a subset of ι. Intuitively this
means that there is a “Could we have let slip that i is an ι?” test that K would
fail by revealing some cell κ⊆ι, since K cannot release κ unless i∈κ. Because no
cell σ of S satisfies σ⊆ι, that slip was excluded by the specificaion.

These two witnesses, refinement matrix R for (v) and subset ι of I for ( 6v),
are related by “soundness” and “completeness”. Soundness says that whenever
SvX, i.e. there exists a suitable witness R for refinement, then there cannot be
any refuting witness ι that (inconsistently) would establish S 6vX. In intuitive
terms, it is that if a software engineer follows sound practices then he will never
lose a court case. Completeness says that whenever S 6vX, i.e. there is no refine-
ment witness R, then there exists a refuting witness ι of that; we do not have to
try (and reject) every single R.

Another way of looking at soundness and completeness in practical terms
is as follows. On the one hand we want (v) to be weak, since the weaker it is
the more implementation strategies are available to the engineer and the less he
will charge for his work. But it cannot be too weak, e.g. the universal relation,
since then he could build faulty implementations: this is soundness. On the other
hand, we want (v) to be strong, since the stronger it is the less likely it is that
implementations will disappoint their customers. But it cannot be too strong,
e.g. the identity, since in that case the engineer will have so few design options
that his products will be expensive or even impracticable. This is completeness.

5 The mnemonics are S for Specification and P for an imPlementation (or Program)
that is supposed to refine S, and K for a “Kludge” that, as an example, in fact does
not refine S. In uncommitted cases, neither P nor K, we will use X.

6 In the probabilistic case §2, there would be infinitely many R’s to check: it would
literally take forever.



And finally, we can think of witness R as a method of construction, whereas
ι is a method of testing. Follow R and our implementation P is guaranteed at
least as secure as the specification S (soundness); but if we simply dream-up (i.e.
cobble together) a product without such an R, and in fact there turns out not to
be one, then there will be a test ι that S will pass but K will fail (completeness).
And we might meet that ι in a courtroom.

2 A probabilistic partial order (not lattice) of information

The probabilistic analogue of the deterministic case §1 is communication chan-
nels with probabilistic transmission [17]. Here the input is a message to be sent
and the output is the message received, chosen from a distribution determined
by the input. The traditional representation of such channels is stochastic ma-
trices where, real numbers in each row i give for each column o the probability
that input i will result in output o. Deterministic channels are special cases of
probabilistic channels, where true is probability 1 and false is probability 0.

As shown elsewhere [9, 10, 3, 14, 1, 11, 13, 2, 5] and mentioned above, there
is a probabilistic analogue of secure refinement SvP that can be formulated as a
generalisation of §1.2: the refinement matrix R is now stochastic, representing a
“probabilistic merge” of S-outputs to P -outputs mediated by R such that again
P=SR. This relation (between matrices) is reflexive and transitive (obviously).
But it is not antisymmetric: for that we quotient to abstract channels where
all-zero columns are removed, similar columns are merged and the order of (the
remaining) columns is ignored [14]. 7 Unfortunately the resulting abstracted
partial order is not a lattice [12] but, aside from that, it shares many structural
properties with deterministic refinement. In particular there are probabilistic
analogues of soundness and completeness, with tests based on “gain functions”
over I which are more general than the subsets of I that suffice for deterministic
channels [9, 3]. 8

3 A demonic lattice of information

3.1 Basic structure

With §1 and §2 as motivating examples, we now treat our main topic: the de-
monic case, where observations are not necessarily wholly determined by the
inputs, but we have no quantitative information about possible variations. This
was earlier proposed in [15, 16], but the probabilisitic model §2 was not known
(we believe) at that time.

7 The identity matrix is stochastic, and the product of two stochastic matrices is
stochastic. Matrix columns are similar just when each is a multiple of the other.
Column order can then be ignored by representing the matrix as a set of (the re-
maining) columns.

8 The completeness property was called the Coriaceous Conjecture in [3]. It was proved
in [9, 1] and, it turns out, earlier by [4].



Definition 2. Demonic channel: matrix formulation A demonic channel
from I to O is a Boolean matrix with I-indexed rows and O-indexed columns
in which each row has at least one true element. 2

Whereas deterministic channels induce partitions on their input-space I, de-
monic channels induce more generally simply sets of subsets of I, i.e. like parti-
tions but allowing the cells to overlap. The overlaps occur just for those i-rows
containing more than one true: those shared i’s “belong” more to than one o-
column, i.e. to more than one cell. 9 We now give a more abstract definition in
those terms.

Definition 3. Secure refinement for demonic channels: matrix formulation
A demonic “specification” channel S: I_OS is secure-refined by an “implemen-
tation” channel P : I_OP just when there is a demonic matrix R:OS_OP such
that P=SR where R is also a demonic channel. 10 We write SvP for that. 2

The similarity between the three models is striking: in each case refinement is
post-multiplication by a matrix of the same kind.

Demonic (secure-) refinement is reflexive and transitive but, as we observe
in the example below, and as in the probabilistic case §2, the relation is not
anti-symmetric: so far, we have only a pre-order.

Each column of the refinement matrix R makes a cell in P by taking the
union of the S-cells that have true in that column. With that insight, we can
rephrase Def. 3 as

S is (demonic/secure) refined by P iff for every cell of P
there is a set of cells of S of which it is the union.

(1)

Put still another way, every cell of the more-refined P must be “justified”
as the union of some set of cells in the less-refined S. An example of anti-
symmetry’s failure is then that X = { {i0}, {i1}, {i0, i1}, {i0, i1, i2} } and
Y = { {i0}, {i1}, {i0, i1, i2} } refine each other: to refine X to Y ignore the cell
{i0, i1} in X; to refine Y back to X merge the {i0} and {i1} in Y to replace the
{i0, i1} in X. Using 1 for true and 0 for false, with matrices we would have for
X to Y the refinement

X R Y

i0
i1
i2

1 0 1 1
0 1 1 1
0 0 0 1




1 0 0
0 1 0
0 0 1
0 0 1

 =

1 0 1
0 1 1
0 0 1

 ,

where for example the third column of R shows that X’s cells {i0, i1} and
{i0, i1, i2} are merged to a single cell {i0, i1, i2}, and so {i0, i1} is “lost”. For

9 We continue to call them “cells”, as for partitions, in spite of the possible overlaps.
10 We write X_Y for matrices (of any element-type) with X -indexed rows and Y-

indexed columns. For deterministic matrices I_O is isomorphically functions I→O.



the other direction Y to X we would have the matrices

Y R′ X

i0
i1
i2

1 0 1
0 1 1
0 0 1

 1 0 1 0
0 1 1 0
0 0 0 1

 =

1 0 1 1
0 1 1 1
0 0 0 1

 ,

where the third column of R′ “creates” {i0, i1} from {i0} and {i1}.
We achieve anti-symmetry via the usual closure construction.

Definition 4. Union-closure for anti-symmetry Say that a subset of PI
is union closed just when the union of each of its subsets is also an element of
it. Define the union closure of some subset X of PI to be the smallest union-
closed subset of PI that contains X, well defined because PI is union-closed,
and any intersection of union-closed sets is again union-closed. Write X∪ for the
union-closure of X. 2

Note that all union-closed subsets of PI contain ∅, and so are non-empty. 11

Lemma 1. Anti-symmetry on union-closed sets Take refinement (v)
as in Def. 3. If X,Y :PI are union-closed, with both XvY and YvX, then in
fact X=Y .
Proof Any element of Y must be the union of some subset of X and hence an
element of X∪, which latter equals X again, because of its union-closure. 2

Definition 5. Demonic-refinement domain for information hiding
Let UI be the union-closed subsets of PI that cover I: it is the abstract model
for demonic information-hiding. The refinement relation (v) is as defined above
(Def. 3) for PI; but on UI it is (also) antisymmetric, thus a partial order. 2

Note that reflexivity and transitivity of (v) on UI are inherited, since UI ⊆ PI.

Lemma 2. UI is a lattice On UI the refinement relation (Def. 3)
is simply (⊇). Thus for X,Y :UI, both therefore union-closed, their join XtY is
simply X∩Y , because it is union-closed as well and (⊇) is a lattice. Their meet
however needs explicit union closure: we define XuY to be (X∪Y )∪.
Proof Omitted. 2

3.2 Spies in action: an example of demonic nondeterminism

Recall the channels from Fig. 1. We can see that the union-closure of C1 from
Fig. 1(a) is { ∅,AE,BW,AEBW }, where we write AE for {A,E} etc. The union-
closure of C2 is { ∅,W,ABE,AEBW }. Therefore from Lem. 2 the join C1tC2 is
{ ∅,AEBW } as in Fig. 3, and the meet C1uC2 is

{ ∅,W,AE,BW,ABE,AEW,AEBW } , (2)

11 For any subset I of I we have ∅⊆I and so ∅ = ∪∅ ∈ I∪ also.



where the underlined ∅ and AEW have been added by union-closure (Lem. 2).
We note however that (2) is not simply the union-closure of the meet Fig. 2(b)
in the deterministic lattice: that would instead be {B,W,AE}∪, that is

{ ∅,B,W,AE,BW,ABE,AEW,ABEW } . (3)

In fact in UI we have (3)<(2) by discarding {B} from the former.
Thus in this case UI admits a more-refined, that is a more secure meet (2)

than the (3) admitted by EI; that is because (2) describes behaviour that no
deterministic channel can realise, as we now discuss.

Suppose that C1,2 are real spies, named Ms. Vowel and Mrs. Early, and our
adversary M sends them into the field to discover the value of our hidden letter
i. The mission however is so dangerous that she knows that only one of the
spies will return: she just don’t know beforehand which it will be. That is the
nondeterminism. How do we describe this situation in UI?

In UI this mission is in fact C1uC2, as in (2) and, as we remarked above,
it is a strict refinement of the deterministic (3) where both spies return. The
following lemma shows that (2) cannot be deterministic.

Lemma 3. Characterisation of determinism within UI For input space I,
the (union-closures of the) deterministic subset EI of its demonic channels UI
comprise exactly those that are complement-closed. That is, any X in UI is in
fact Y ∪ for some Y in EI iff X is intersection- and complement-closed.
Proof “Only if” is trivial. If X in UI is complement-closed, then it is also
intersection-closed. For each i in I let Xi be the intersection of all elements
(subsets of I) of X that contain i. By intersection-closure of X each Xi is itself
in X: in fact it is the smallest element of X that contains i.

Now for any two i6=i′ we have that Xi and Xi′ are either equal or disjoint: if
they had a proper overlap then either Xi or Xi′ , or both, could be made smaller.

The sets Xi are the cells of the partition of which X is the union-closure:
they are pairwise disjoint, non-empty, and cover I. 2

Lem. 3 shows that (2) cannot be deterministic, because it can reveal BW if Ms.
Vowel returns (and says cons); and it can also reveal ABW if Mrs. Early returns
(saying early). But this mission can never reveal B, that is the intersection
BW ∩ ABW, since for that both spies would have to return.

Now we consider an intriguing further possibility, where the spies report by
radio instead of in person, using Booleans agreed beforehand (a one-time pad):
for Ms. Vowel “true” encodes vowel etc. On this even more dangerous mission
M knows that both spies will be captured, but she knows also that exactly one
will send a report back to her by radio, either true or false. But she won’t know
which spy it was. Here the demonic channel is

{∅,BW,ABE, I} (4)

which, by Lem. 3 again, is also properly demonic. This use of encoding, we should
remark, underscores our abstraction from output values: from our point of view
“Ms. Consonant” would be exactly the same spy as Ms. Vowel, and Mrs. Late
would have the same utility as Mrs. Early.



3.3 Testing, soundness and completeness

The methodological concerns of §1.3 apply to demonic channels too: if we suspect
that S 6vK, how can we prove the refinement’s failure in court?

Our earlier technique, for testing deterministic channels, does not work for
demonic channels. Let S be { ∅, {i0, i1}, {i2}, {i0, i1, i2} } and K, not a re-†
finement, be { ∅, {i0, i1}, {i1, i2}, {i0, i1, i2} }. We know that S 6vK because
{i1, i2} in K is not the union of any cells in S. But no deterministic test ι in
the style of §1.3 shows S 6vK, because every cell of K is a superset of some cell
of S. Thus deterministic tests are too weak, not complete for demonic channels.
Strangely, every cell of K’s being a superset of come cell of S, in a sense more
demonic, is still not sufficient for refinement. 12

In this section we synthesise a complete test-suite for demonic channels.
By definition we have S 6vK just when there is some cell κ in K that is not

the union of any set of cells σ1,··· ,N drawn from S — which, in turn, is just when
there is further some single element i of I such that every i-containing cell σ of
S is not a subset of κ. That is we have S 6vK just when

there are i, κ with i∈κ∈K such that for every σ in S
we have i∈σ⇒ σ 6⊆κ .

(5)

Our preliminary definition of the “suite” of demonic tests is therefore that they
are pairs (i, ι) with i∈ι⊆I. A demonic channel X passes such a test just when
every cell χ in X with i∈χ satisfies χ 6⊆ι. 13

For soundness of the (preliminary) test suite, argue the contrapositive by
assuming that we have SvP and a test (i, ι) that P fails, so that there is some
cell π in P with i∈π⊆ι. But π = ∪nσn for some σ1,··· ,N , and so i ∈ (∪nσn) ⊆ ι
whence, for some n, we have i ∈ σn ⊆ ι with σn ∈ S. That is, there is a cell σn
of S that fails the test, and so S fails as a whole.

For completeness of the test suite, suppose S 6vK and appeal to (5) above to
choose i, κ; then set ι:=κ. The test (i, ι) itself is passed by S, by (5); but it is
failed by K because we do not have i∈ι⇒ ι 6⊆ι — the antecedent is true but the
consequent is trivially false. For example the test that shows

{ ∅, {i0, i1}, {i2}, {i0, i1, i2} } 6v { ∅, {i0, i1}, {i1, i2}, {i0, i1, i2} } ,

the example from (†) above, is (i1, {i1, i2}) — the cells σ on the left that sat-
isfy i1∈σ are {i0, i1} and {i0, i1, i2} and, for both, we have σ 6⊆{i1, i2}. The cell
κ:= {i1, i2} on the right however satisfies i1∈κ but not of course κ6⊆{i1, i2}.

For our preferred definition of demonic testing we reformulate the above in
terms of two subsets of I, rather than an element i and a subset ι, because that
will be more convenient for source-level reasoning over programs. 14

12 They are trivially sound, however, since weakening a test suite trivially preserves its
soundness: with fewer tests, there will be fewer failures.

13 In fact i∈ι is not necessary, since a pair (i, ι) with i/∈ι would be a test passed by
every cell, vacuously sound for all channels. Allowing it would make no difference.

14 Subsets of I, rather than individual elements, are more easily turned into predicates
for source-level reasoning over a state space of typed variables: if you add another
variable, a subset remains a subset but a point is no longer a point.



Definition 6. Tests for demonic refinement A test for demonic refinement
over space I is a pair (α, β) of subsets of I. A demonic channel X passes the
test (α, β) just when all its cells pass the test; a cell χ of X passes the test just
when χ⊆α⇒ χ⊆β. 2

The top of the UI lattice is the reveal-nothing channel {∅, I}, and it passes
every non-trivial test; the bottom of the lattice is the reveal-everything channel
PI which fails them all. 15

Lemma 4. Equivalence of testing suites The test suite of Def. 6
is equivalent in power to the preliminary test suite (i, ι) discussed at (5).

Proof We show that S 6vK can be established by an (α, β)-test iff it can be
established by an (i, ι)-test.

if — Any (i, ι)-test can be expressed as an (α, β)-test by setting α:= ι and
β:= (I−{i}). To see that, let χ be an arbitrary cell and reason

i∈χ⇒ χ6⊆ι
iff χ6⊆(I−{i})⇒ χ 6⊆ι
iff χ⊆ι⇒ χ⊆(I−{i})
iff χ⊆α⇒ χ⊆β . “set α, β:= ι, (I−{i})”

Thus (α, β)-tests are at least as discriminating as (i, ι)-tests.

only if — If S 6vK is established by (α, β), then for all cells σ in S we have
σ⊆α⇒ σ⊆β; and for some cell κ in K we have κ⊆α ∧ κ6⊆β. Now reason

κ⊆α ∧ κ6⊆β
iff κ⊆α ∧ i∈κ “for some i/∈β”

hence κ fails test (i, α) ,

and for a contradiction
if σ fails test (i, α) “for the same i/∈β as above”

then i∈σ ∧ σ⊆α
hence i∈σ ∧ σ⊆β “assumption σ passes test (α, β)”

hence i∈β ,
which contradicts i/∈β, and so in fact σ cannot fail test (i, α).

Thus test (i, α) establishes S 6vK, as required. 2

15 Non-trivial tests make at least one distinction. Tests (α, β) are trivial when α⊆β
(passed by every cell), and when α, β are disjoint (passed only by cell ∅.) In general
(α, β) is equivalent to (α, α∩β).
Also for example (α′, β′) is weaker than (α, β) when α′⊆α and β⊆β′. Compare
Footnote 22 below.



Although UI is restricted to union-closed subsets of I, we can give an
“abridged” representation of demonic channels in which union-closure is taken
implicitly. In abridged form the non-refinement example from (†) becomes

{ {i0, i1}, {i2} } 6v { {i0, i1}, {i1, i2} } ,

and the (α, β)-test for this non-refinement is ({i1, i2}, {i0, i2}). In fact we have

Lemma 5. Testing abridged representations For any subset X of PI
and subsets α, β of I, we have that X passes the test (α, β) iff the channel X∪

passes that same (α, β).
Proof If X∪ passes the test then so does X, because X⊆X∪.

If X∪ fails the test (α, β) then for some χ1,··· ,N in X we have ∪(χ1,··· ,N )⊆α
but ∪(χ1,··· ,N ) 6⊆β. From the latter we have χn 6⊆β for some n; but from the
former we still have χn⊆α for that n. Because that χn from X fails the test, so
does X itself. 2

From here on, we will use abridged representations if convenient. In fact, among
abridged representations of a channel there is a smallest one where no cell is the
union of any other cells (except itself). We call that the “reduced” representation
of the channel, and note that all deterministic channels EI are reduced.

Definition 7. Reduced demonic channels A subset X of PI
is a reduced channel just when ∪X = I and no cell χ in X is the union ∪χ1,··· ,N
of any other cells in X except trivially ∪{χ}. Note that ∅ is excluded from an
abridged representation, since it is ∪{} (as well as ∪{∅}.) 2

We say that a reduced Y with X=Y ∪ is a reduction of X.

Lemma 6. Uniqueness of reductions Any demonic channel X in UI
has a unique reduction, a unique reduced channel Y in PI such that X=Y ∪.
Proof Existence of a reduction of X is trivial: keep removing superfluous cells
in X until no more are superfluous.

For uniqueness we argue from Lem. 5 and the soundness of testing that two
reductions Y, Y ′ of the same X must satisfy YvY ′ and Y ′vY , so that any cell
γ of Y is expressible as a union ∪γ′1,··· ,N of cells γ′n from Y ′.

In turn, each of those γ′n’s must be a union of cells ∪γn,(1,··· ,M) back in Y ,
so that γ = ∪γ(1,··· ,N),(1,··· ,M).

Because Y is reduced, each γ(1,··· ,N),(1,··· ,M) must be just γ itself. Thus γ is
in Y ′. 2

3.4 Justifying refinement’s definition

The tests of Def. 6 justify a refinement failure S 6vK by guaranteeing that there
is a test that S passes but K fails. The utility of a discriminating test is that, if
you can find it, it proves the failure with a single witness. But the tests (α, β)
are hardly an obvious, intuitive choice themselves.



To justify refinement’s definition to both client and vendor, we appeal to a
more primitive notion of correctness that we take as self-evidently desirable for
security (of demonic channels): that if K can reveal its input is some i exactly
but S never can, then K cannot be a refinement of S.

Definition 8. Primitive refinement of channels We say that S
is primitively refined by P just when there is no singleton cell {i} in P that is
not also in S. We write it S4P . 2

Put more simply, Def. 8 says that S4P unless there is a particular i that P
can reveal but S cannot. “I might not know any theory; but I know that if S
guarantees never to leak my password, then P can’t either.” 16

It’s the simplicity of (64), in everyday terms, that is its justification. But it
is however too simple for general use: Def. 8 does not justify (v) directly. If S
leaks the last character of a password, but K leaks the last two characters, then
probably S 6vK — but we will still have S4K because neither leaks the password
exactly.

Therefore to justify (v) using Def. 8 we must do more: for that, we recognise
that channels will probably not be used alone: larger channels can be made from
a collection of smaller ones. In particular, we define

Definition 9. Channel composition The composition of two channels C1,2 over
the same input I but outputsO1,2 respectively a new channel of type I→(O1×O2)
defined

(C1‖C2).i := (C1.i, C2.i) . 2

Thus an adversary with access to two channels C1,2 acting on the same input
can be considered to be using a single channel C1‖C2: she observes its composite
output (o1, o2) where o1,2:=C1,2.i respectively.

We now give two desirable principles that should apply to (v) in general: 17

robustness If SvP then we should have primitive refinement even in the context
of an arbitrary (other) channel C, that is (S‖C) 4 (P‖C).

necessity If S 6vP then for there must be some (other) channel C that justifies
the failure, i.e. such that (S‖C) 64 (P‖C).

From the two principles above we can derive two others:

safety If SvP then S4P , from applying robustness with the identity context.
monotonicity If SvP then (S‖C)v(P‖C) for any (other) channel C — for,

if not, by necessity there would be (still another) channel D such that
(S‖C)‖D 64 (P‖C)‖D, that is by associativity S‖(C‖D) 64 P‖(C‖D); and
that, by robustness wrt. channel C‖D, implies S 6vP .

16 Just to be clear: a security breach releasing some large number N of passwords
usually means in our terms that there are N singleton cells, not that there is just
one cell with N passwords in it. The former means that each of N people has
his password leaked exactly. The latter means instead that someone’s password is
leearned to be one of those N .

17 Together they are an equivalence because SvP iff (S‖C) 4 (P‖C) for all C.



We note that the basic principles rest on two informal notions: that (64) rea-
sonably captures “is clearly broken” in the sense a layman might understand
it, and that (‖C) describes “contexts” in which laymen would expect our chan-
nels reasonably to be able to operate. In particular, robustness emphasises that
checking channels’ security properties individually is not enough: two adversaries
could have one channel each and, if they combined their results, they would in
fact be acting like a single adversary using the channels’ composition, probably
a more powerful attack than is possible with either channel alone.

Once those notions (4) and (‖C) are fixed, robustness and necessity deter-
mine refinement (v) uniquely. That is, justification of (4) and (‖C) and robust-
ness and necessity are collectively a justification of (v) and, further, it is the
only relation that can be justified that way. This process is called compositional
closure, that (v) is the compositional closure under (‖) of (4).

The derived principles have direct significance for everyday use when a sys-
tem C1‖ · · · ‖CN might be composed of many subsystems Cn: safety says that
if a vendor establishes SvP through his software-development safe practices
then, because (as well) he has established S4P , his client will be happy; and
monotonicity says that the vendor can use stepwise refinement [19] on his Cn’s
separately to modularise his software-development process that ultimately pro-
duces the whole system C1‖ · · · ‖CN . We now have

Theorem 1. Refinement is justified Def. 5 of refinement
satisfies robustness and necessity wrt. Def. 8 (primitive refinement) and Def. 9
(composition).

Proof

Robustness

Assume that SvP but suppose for a contradiction that S‖C 64 P‖C. In
that case there must be π, γ from P,C respectively and input i such that the
intersection π∩γ is {i} for some i in I, indicating than when the observation
of P‖C is (π, γ) an adversary would know that the input was i exactly, and
furthermore that that does not occur with any σ from S. Now because SvP†
we have π = ∪σ1,··· ,N for some σ1,··· ,N each in S, so that

(σ1∩γ) ∪ · · · ∪ (σN∩γ) = {i} also,

and so for at least one n we must have σn∩γ = {i}, contradicting “further-
more” at (†) above. Thus S‖C 4 P‖C as desired.

Necessity

If S 6vK then by §3.3 (completeness and Def. 6) there is an (α, β) test that S
passes but K fails. Choose therefore a cell κ in K such that κ⊆α but κ6⊆β,
and choose an element k in κ−β.%

Define channel C: I→Bool so that

C.i := i=k ∨ i/∈α , (6)



and form channel K‖C which for input k can give 18 output (κ, true). In
that case the adversary reasons

i∈κ ∧ (i=k ∨ i/∈α)
implies i∈α ∧ (i=k ∨ i/∈α) “κ⊆α ”

hence i=k ,

so that she deduces that i is k exactly.

Now we show that S‖C can never reveal that i=k exactly. If S‖C is given
(the same) input k then it will produce output (σ, true) for some σ. Now
assume for a contradiction that the adversary can deduce that i is k exactly
in this case also. Write α for I−α and reason

σ ∩ ({k} ∪ α) = {k} “assumption for contradiction 19”

implies σ ∩ ({k} ∪ α) ∩ α = {k} ∩ α “(∩α) both sides”

implies σ ∩ α = ∅ “k ∈ α”

iff σ ⊆ α
implies σ ⊆ β “assumption that S passes test (α, β)”

implies k ∈ β , “ k ∈ σ ”

which contradicts that k was chosen from κ−β at (%) above.
So we conclude that if S 6vK then there is an input k and a channel C such
that running K‖C on k can reveal k exactly but S‖C on k can never reveal
k exactly, that is that S‖C 64 K‖C.

2

Corollary 1. Refinement is sound and monotonic Def. 5 of refinement
satisfies soundness and monotonicity wrt. Def. 8 (primitive refinement) and
Def. 9 (composition).
Proof Immediate from Thm. 1. 2

4 “‘Weakest pre-tests” and source-level reasoning

For eventual source-level reasoning, where e.g. leakage via channels is made
a primitive imperative-programming statement, we can imagine asking what
security guarantees we must have before a program runs in order to be sure that
running the program has not leaked “too much” information afterwards.

Suppose that in our letters example it’s especially important that the spies
never learn that our i is exactly A, because A is information about an especially
important person. For us the other people B,E,W are not so important.

18 It’s “can” rather than “must” because K is nondeterministic: it might not select cell
κ for input k; but because k∈κ, it can.

19 The left-hand side is the possibilities the observer deduces for the input i when she
sees that i∈σ and that C.i=true. The equality therefore says that she concludes the
only possible input value is k.



Let our program (i.e. channel) be X with typical cell-names χ. To express
“X never reveals that i is A” using a test in the style of Def. 6, we could write
χ⊆{A}⇒ χ⊆∅ for all χ∈X. We can see by inspection from Fig. 2 that both the
“one spy returns” channel and the “radio spies” channel pass that test (because
all of their cells χ do).

(a) Only one spy returns. (b) A Boolean radio message is received.

Fig. 7. Ms. Vowel and Mrs. Early in action

So now we complicate things by imagining that, as a result of previous mis-
sions, M has some “a priori” knowledge about our i, knowledge that we would
also like to express as a test. For example we could say that she knows before
she sends Vowel and Early that i cannot be E, expressing that with the test
χ⊆I ⇒ χ⊆{ABW}. Could she ever learn from her spies that actually i=A?$

The general “weakest pre-test” question for protecting A is 20

What security criterion must our i satisfy before the spies are sent in or-
der to ensure that M cannot not learn i=A once the spies have reported?

Obviously the pre-test i 6=A would be strong enough — if you don’t want A to
be leaked, don’t put it in your database. But can we do better?

The effect that M ’s a-priori knowledge, expressed as a cell µ say, has on her
spies’ output cells is simply that each cell χ becomes χ∩µ — she learns χ from
the channel, and she knew µ already. Thus to convert our post-test χ⊆{A}⇒χ⊆∅
on χ to a pre-test on µ alone, we replace χ by χ∩µ, to give

(χ∩µ) ⊆ {A} ⇒ (χ∩µ) ⊆ ∅ , and then (7)

instantiate that for every χ in the (abridged) channel Fig. 7(a) — we can do
that because we know the channel’s construction and so we know what χ’s it
can produce. If we take χ={W}, we get ({W}∩µ) ⊆ {A}⇒ ({W}∩µ) ⊆ ∅, which
is equivalent to µ ⊆ ABE⇒ µ ⊆ ABE, that is just true. For all four cells it’s

µ ⊆ ABE ⇒ µ ⊆ ABE true when χ = W (done just above)
µ ⊆ ABW⇒ µ ⊆ BW — when χ = AE
µ ⊆ AE ⇒ µ ⊆ AE true when χ = BW
µ ⊆ AW ⇒ µ ⊆W — when χ = ABE ,

(8)

20 This is obviously by analogy with weakest preconditions [6].



where in each case we get a test again, but of “pre-cell” µ rather than “post-
cell” χ, because χ∩µ ⊆ ι can be written µ ⊆ ι∪χ. Thus our overall pre-test for
Fig. 7(a) and the post-test χ⊆{A}⇒ χ⊆∅ is the conjunction

µ ⊆ ABW⇒ µ ⊆ BW and µ ⊆ AW⇒ µ ⊆W (9)

that we get by discarding the true’s from (8).
Thus a single post-test can generate a conjunction of pre-tests, which con-

junctions we take therefore as our general form of test. 21 In this case however
the first conjunct of (9) implies the second, and so we end up with only the first
one. 22 To cast it back into everyday language, we rewrite (9) equivalently as
E/∈µ⇒ A/∈µ, that is that †

if M believes i is not E, she must also believe it’s not A.

Under those conditions, her one-spy-returns attack will never reveal that i=A.
In the case of the “radio spies” Fig. 7(b) we get only the second conjunct

(because the case χ=AE of (8) is missing), which as we have just seen is weaker
than the first and so we can withstand “M ’s knowing more”. That is, in Fig. 7(b)
we are secure against M ’s knowing beforehand that i6=B as at ($) above; but
in Fig. 7(a) we are not. That’s not surprising, since Fig. 7(a) < Fig. 7(b) and
therefore we expect to be less at risk from the radio spies.

For source-level reasoning we could e.g. write channels as primitive state-
ments leak c st Φ(c,i) where Φ is a formula in state variables i and bound
variable c is the emitted value: in state i the channel can emit any c satisfying
Φ. As a special case we’d write leak Exp(i) for the deterministic case, when Φ
is c=Exp(i) for some expression Exp in i. A modality KΨ(i) would express that
the current cell χ satisfied χ ⊆ {i: I|Ψ(i)}, and our tests would then be of the
form (∀c • KΨ(i, c)⇒KΩ(i, c)) where the universal quantifier would if necessary
express wt-generated conjunctions (which distribute through subsequent wt’s).

With all that, expressing our “weakest pre-test” approach at the source level
(and making reference to variables implicit) would give in general

wt( leak c st Φ(c), KΨ ⇒ KΩ )

= (∀c • K(Φ⇒ Ψ)⇒ K(Φ⇒Ω)) ,

and for the deterministic case (∀c • K(Exp=c ⇒ Ψ)⇒ K(Exp=c ⇒ Ω)) .
The pre-test E/∈µ⇒ A/∈µ that we discovered at (†) above, to constrain M ’s

prior knowledge, would be therefore be rendered at the source level as

K(i6=E)⇒ K(i6=A) If M knows i is not E,
then she also knows it’s not A.

21 Starting again, from conjunctions of post-tests, will just generate conjunctions of
conjunctions of pre-tests, so we do not have to expand our expressiveness any further.
Furthermore, every member of UI is characterised uniquely by a conjunction of such
tests: every conjunction of tests “is” union-closed (easy); and for every union-closed
set there is a conjunction of tests that only it satisfies (sneaky).

22 In (9) here the (α′, β′) on the right is weaker than (α, β) on the left because we have
α′⊆α and α′∩β ⊆ β′. Compare Footnote 15 above.



Looking further ahead, we remark that for updates to the hidden state i

the weakest pre-test is particularly simple, because updates leak nothing: if for
example statement S is some assignment i:= Exp(i), then the weakest pre-test
is given by

wt(S, KΨ ⇒ KΩ ) = K(wp(S, Ψ))⇒ K(wp(S,Ω)) , 23 (10)

where wp is conventional weakest-precondition [6]; and this applies even when S
is a demonic assignment (like a choice from a set). Non-leaking statements gen-
erate no pre-conjunctions. Conventional pre-and postconditions are embedded
as “half tests” K(true)⇒KΩ, equivalently just KΩ, and are respected by (10).

5 Conclusion

We have located a demonic model of information flow “in between” Landuaer
and Redmond’s deterministic model [8] and a more recent probabilistic model
[9, 3]. Originally presented ab initio as “The Shadow” [15], it is now more clearly
structured; and as a result its properties can be divided into those inherent in
demonic choice, and those shared with other models of information flow.

The deterministic model is a restriction (not an abstraction) of the demonic
model: they give the same level of detail, but the latter describes more situa-
tions than the former. For example collaboration of the Spies (§3.2) cannot be
expressed at all in the deterministic mode. The demonic model is however an
abstraction (not a restriction) of the probabilistic: they can describe the same
systems, but the latter gives a more detailed (i.e. quantitative rather than only
qualitative) description. For the Spies, we are abstracting from the probabilities
that one or the other might return, and the prior probability on the secret letter
A,B,E,W.

All three systems have the the same structural definition of secure refinement,
particularly evident when we use the matrix formulation: one channel P is a
secure refinement of another channel S just when P can be obtained via post-
multiplication by a so-called refinement matrix. This is in fact channel cascade,
if the refinement matrix is for that purpose considered to be a channel from
S-observables to P -observables.

The deterministic- and the demonic systems are lattices wrt. the refinement
order; but the probabilistic system is not [12]: it is however a partial order if
properly quotiented.

All three systems have a complementary testing semantics, one that provides
a witness to any refinement failure. All three systems can justify their refine-
ment order by general principles, robustness and necessity (§3.4) whereby the
refinement relation is reduced to a more primitive form that is accepted “by the
layman”. (In the probabilistic case, the reduction is to the more primitive Bayes
Vulnerability, the probability of guessing the secret in one try [9, 5].)

23 We assume here that S is everywhere terminating.



Finally, we mention that these systems show how the notion of security has
become more sophisticated over the decades. Originally a system was said to be
secure or insecure, an absolute black-or-white judgement, based on whether is
suffered from “interference” or not [7]. Later it was realised that this criterion is
too strong, since almost no useful system can be wholly interference-free: even
a password-based login system releases information when a login attempt fails.

That led to the idea comparing two programs’ information flow, particularly
comparing a specification with an implementation: refinement holds just when
the implementation cannot leak except when the specification can. In the prob-
abilistic case, the comparison is even more sophisticated: the implementation
must leak no more than the specification does.

Our aim is to enable this kind of refinement-based reasoning at the source-
code level, based on “information-flow aware” assertions like those proposed
in §4. From those it should be possible to construct an algebra of program
transformations that preserve security- and functional characteristics during the
program-development process in which specifications are manipulated to become
implementations.

Finally, in the longer term we would like to add a fourth layer above the three
mentioned here: one where probability, demonic choice and secrecy are handled
all at once.
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