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Why?

Ordinals are cool: where else can we say
something as mind-blowing as “the set of countable
ordinals is uncountable”?

Previous approaches in typed higher order logics
have not allowed

» suitably arbitrary uses of supremum; or

» modelling of w;
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Also, Ordinals in ACL2

ACL2 uses ordinals to justify recursive definitions:

1. find a suitable ordinal when making definition
(automatically or interactively);

2. system admits definition
But, ACL2’s ordinals are actually an ordinal

notation, with no verified connection to “real”
ordinals.
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ACL2’s Ordinals

ACL2’s notation is Cantor Normal Form up to ¢
> e.g.,w2—|—cu-2—|—1orcu‘”w+1 + w44+ w-10+4

Kaufmann and Slind show that < on this type is
well-founded; this is all that’s really necessary.

However, we have shown the ACL2 type and
operations are valid ordinal arithmetic.
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Notational Approaches

Generally, a notational approach is easy to
mechanise.

Do the equivalent of

Hol_datatype ord = End of num
| Plus of ord X num X ord’

But, this only captures countably many ordinals.
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Another Algebraic Approach

Based on understanding of ordinals as 7ust like the
naturals with a sup (or limit) function’

Hol_datatype ' ord = Z
| S of ord
| Lim of (num — ord)"

Using num above still only gets countable ordinals
(and sup over countable sets).

More importantly, tricky quotienting still required
(see paper for how to make this work).
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von Neumann’s Approach

An ordinal number is a set o such that

» « is transitive (that is, every member of « is
also a subset of «); and

» Vx, y € a one of the following holds: x € y,
wit==llioTinising

And so, every ordinal is equal to the set of its own
predecessors.
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Simple Types and von Neumann

If the type of an ordinal o has to equal the type of
a set of ordinals (o’s predecessors), we must solve
“r set = 77, which is clearly impossible in HOL.

The best we can hope for is to show that ordinals
are in bijection with predecessor sets...
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von Neumann is a Distraction

“Really,” ordinals are just canonical wellorders of a
given order type.

In set theory (ZFC, NBG, ...) we can't say “ordinals
are equivalence classes of wellorders” because this
phrase does not denote a set.

But we can do just this in HOL.
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Ordinals are Wellorder Equivalence
Classes

This works in HOL because the wellorders, and
thus the ordinals, are with respect to some
underlying set.

Start with o wellorder, the type of sets of pairs of
as where the relation is a wellorder.

And so, the @ wellorders are in bijection with a
(strict) subset of all possible values of type
(0 X a) set.
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Necessary Properties of Wellorders

Need to define notions of
» wellorder isomorphism;
» initial segments on wellorders; and

» wellorder <: # < v iff there is an e in v such
that # is order isomorphic to the initial
segment of v up to e

Need to prove:
» isomorphism an equivalence;

» ordering is a partial order, well-founded,
trichotomous.

ITP 2013 11/25



Next Step: Quotient

All the important properties lift through
quotienting.

Thanks to well-foundedness, can define oleast
operator, returning minimal ordinal of a
non-empty set.

» oleast{x | T} is the zero ordinal.
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Cardinalities

If the type « is finite, & wellorder only has finitely
many elements too.

So, let the o ordinal type be a quotient of
wellorders over the (sure to be infinite) type
Q.+ num.

» oleast{x | y < x} is the successor of y

» some work (still to come) to show this always
exists
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The Ciritical Cardinality Result

There are strictly more values in « ordinal than
there are in « + num

» follows from the observation that o ordinal
itself forms a wellorder, and

» that every wellorder over & + num is
isomorphic to an initial segment of the
o« ordinal wellorder
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Defining Supremum

Let

sup S = oleast{ar | a & U preds (5}
BeS

Le., the least ordinal not in the combined
predecessors of all the elements in .
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Supremum Works

“The least ordinal not in the combined predecessors of all
the elements in §” is OK because:
» any given ordinal in & ordinal has no more
predecessors than & + num; and
» cardinal kK X k & k, so there must be a
minimal element not in the collective
predecessors
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The Supremum Rule

It is legitimate to write
sup S
when S is a set of & ordinalsif

S < a + num
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And so...

Can define w = sup{&n | T}

» where & is the injection from natural numbers
into ordinals

Can distinguish limit and successor ordinals.

Can prove a recursion theorem by cases...
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A Recursion Theorem

With < on ordinals well-founded, one could
always define functions by well-founded recursion.
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A Recursion Theorem

With < on ordinals well-founded, one could
always define functions by well-founded recursion.

However, this pseudo-algebraic principle is nicer
to use:

Vasflf. Jf
f0) = z
flat) = sfla,fla))
f8) = HBfin) | n<BY)

(where 3 has to be a non-zero limit ordinal).
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Arithmetic Comes Next

The recursion principle makes it easy to define
» addition,
» multiplication,
» exponentiation

Some more work results in definitions and
properties of division, remainder, and discrete
logarithm.
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See Paper For:

Cantor Normal Forms:

» Every ordinal can be expressed as a unique
“polynomial” over bases > 2
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See Paper For:

Cantor Normal Forms:

» Every ordinal can be expressed as a unique
“polynomial” over bases > 2

Existence of Fixed Points:

» Every increasing, continuous function has
infinitely many fixed points

» E.g, can define ¢, first fixed point for x — w*
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Countable Ordinals and w;

A countable ordinal is one with countably many
predecessors.

In @ ordinal, which is over & + num, all ordinals
may be countable.

» Critical cardinality result tells us there are
uncountably many of them!

To get more, instantiate o in & + num to
a + (num — bool)
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The First Uncountable Ordinal

First, prove that cardinality of {3 | 3 is countable}
is < cardinality of (& + (num — bool)) + num

Then, it’s legitimate to write
wy = sup{3 | B is countable}

when [ has type (« + (num — bool)) ordinal
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w1 and so on

wq is the first uncountable ordinal:

£ < w; <= fis countable

To capture wy we might instantiate type variable

a — a + ((num — bool) — bool)
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Conclusions

The “obvious” way to mechanise ordinals, as
equivalence classes of wellorders, works well.

Supremum can be defined naturally, taking sets of
ordinals as an argument.

» Usual arithmetic falls out

Just as naturally; large ordinals such as w; can be
defined.
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