
Dealing With TLB Tags
or

I Want to Build a System, What Can L4 Do for Me?

Gernot Heiser

School of Computer Science and Engineering
University of NSW, Sydney 2052, Australia

gernot@unsw.edu.au

October 11, 2001

Abstract

This paper discusses TLB tags found on various archi-
tectures, their use in single- and multi-address-space op-
erating systems, and the implications on the L4 API.

1 Introduction

Most modern computer architectures tag entries in the
translation lookaside buffer (TLB) with one or more
fields which identify the addressing or protection con-
text to which an entry belongs. This makes it possible
to minimise TLB flushes during context switches.

This paper presents the tagging scheme used by vari-
ous architectures. It first presents the schemes presently
in use. It then examines each scheme from the angle of
how it might be used in the context of a single-address-
space operating system (SASOS), as well as a more
traditional multi-address-space operating system (MA-
SOS). Finally it attempts to draw conclusions on which
L4 mechanisms might be appropriate to support the use
of the various schemes for the implementation of both
kinds of operating systems. APIs for dealing with tags
are suggested.

2 TLB Tags

The following tagging schemes are in used in contem-
porary architectures:

Address-space identifier (ASID): Each TLB entry
(TLBE) is tagged with an ID representing the
process it belongs to. On address translation the
contents of anASID registeris combined with the
page number to form the key for which the TLB
is searched. TLB entries are thus only considered
valid for translation if they match the value of an

ASID register, which is part of the executing pro-
cess’s context.1 The total number of possible ASID
values is typically of the order28–212. ASIDs
are used on the MIPS [Hei93], Alpha [Dig92]
and UltraSPARC [Sun97] architectures, as well as
some PowerPC processors [IBM01].

The Pentium’s segment registers can, in certain cir-
cumstances, be used like ASIDs (Liedtke’ssmall-
address-space trick[Lie95]), although they are
conceptually more akin to region IDs.

Region identifier (RID): This represents a generalisa-
tion of the ASID scheme. Each TLB entry is
tagged by a RID, and several RIDs may be active
at any time. This makes it easier to share data (and
makes a global bit unnecessary). RIDs are deter-
mined by the leading three bits of the virtual ad-
dress, thevirtual region number(VRN). The VRN
identifies one of 8region registers(RRs), which
contain the RID corresponding to the virtual ad-
dress. RIDs are 24 bits wide, but the full size may
not be supported by the hardware. However, the ar-
chitecture specifies that at least218 RIDs are sup-
ported on IA-64. RIDs are used on HP PA-RISC
[Lee89] (calledspace IDsthere) and IA-64 [Int00].

Protection key (PK): PKs represent an alternative to
ASIDs. They are not used in the associative lookup
of a TLB entry, but are used once a matching entry
is found. The PK of the entry is used in a second
associative lookup, this time of a set ofprotection
key registers(PKRs). The matching PKR (if any)
contains a second set of access rights, in addition
to those in the TLBE. Both sets must allow the at-
tempted access. By treating the PKRs as part of
the process context, this scheme supports sharing

1Most architectures will also support aglobal bit which forces a
TLB entry to match irrespective of its ASID value.

mailto:gernot@.unsw.edu.au


0rr

2

1

7

3

063

24

24

rr

rr

rr

Hash

Region ID Key VPN Rights PPN

VRN VPN Offset

PPN Offset

Key Rights

Translation Lookaside Buffer (TLB)

Region ID

Region Registers (RR)

Protection Key Registers (PKR)

Figure 1: Address translation in IA-64, exhibiting the most general TLB tagging

a TLBE by processes sharing a page (with poten-
tially different permissions,but the same address).
The total number of possible PKs is large,215 on
HP PA-RISC and at least218 on IA-64 (PKs are
24 bits wide on that architecture). This scheme is
used in PA-RISC (where PKs are calledaccess IDs
or protection IDs) and IA-64.

Domain identifier (DID): This scheme is very similar
to PKs. The main difference is that the number
of possible tags is very small and the DID is used
to index adomain registerrather than using an as-
sociate lookup. Furthermore, ARM domains ap-
ply to whole 1MB sectionsof the address space,
rather than individual pages. Uses are otherwise
the same as for PKs. The total number of DIDs
available is 16. DIDs are used in the ARM archi-
tecture [Jag95].

Figure 1 shows the address translation in IA-64,
which exhibits the most general tagging scheme.

For completeness’ sake, the StrongARMprocess ID
virtual address mapping scheme [Int98] should be
mentioned, even though it is not strictly a TLB tag-
ging scheme. An address in the lower 32MB of the vir-
tual address space is automatically re-mapped to another
aligned 32MB region in the lower half of the virtual ad-
dress space, identified by the contents of theprocess ID
register(PIDR). This avoids TLB flushes when switch-
ing between small address spaces in a similar fashion to
Liedtke’s trick.

3 Other Architectures

How about other architectures? The only major archi-
tecture not covered so far is the PowerPC, which has
a “proper” segmented memory architecture [MSSW94].
The user view of the 64-bit PowerPC’s address space is
that of a 64-biteffective address(EA), consisting of a
36-bit effective segment ID(ESID), a 16-bit page num-

2



ESID VSIDFlags

Segment Lookaside Buffer (SLB)

OffsetPN

012

VSID

VPN

79 28

Offset

063 12

PNESID

36 16 12

80−Bit Virtual Address (VA)

64−Bit Effective Address (EA)

52

28

Figure 2: Translation from segmented to flat virtual addresses on the PowerPC architecture

ber (PN) and a 12-byte offset.2 This is translated into a
flat 80-bitvirtual address(VA) consisting of a 68-bitvir-
tual page number(VPN) and a 12-bit offset. The VPN
is created by concatenating a 52-bitvirtual segment ID
(VSID) with the PN.

The translation from EA to VA happens by using the
ESID as an index into a hashedsegment table. Segment
table entries are cached in asegment lookaside buffer
(SLB), which is loaded from the segment table by a
hardware walker. Translation from the segmented EA
to the flat VA is shown in simplified form inFigure 2.
The VPN is translated into a frame number in the usual
fashion via a TLB (which may be hardware or software
loaded).

According to the generic PowerPC documentation
neither the SLB nor the TLB contains a context tag (and
the SLB contains no write-protection bit). For the TLB
this is no issue, as the 80-bit VA is context indepen-
dent. This is not the case for the EA, though, and in
a system where a process’s address-space layout is de-
termined at link time, a context switch would imply a
switch of the segment table, and hence force flushing of
the SLB. This is probably not a big deal, as the SLB is
small and hardware-loaded. Still, context switch over-
head would be reduced if the SLB was tagged, or if it
was at least possible to pre-load it on a context switch
(which the architecture doesn’t seem to support either).

PowerPC ESIDs/VSIDs look superficially like IA-

2The PowerPC architecture does not seem to support super pages.

64 VRNs/RIDs. However, the vastly different number
(256M ESIDs vs. 8 VRNs) implies significant differ-
ences in handling them. The set of IA-64 RIDs is con-
tained in the 8 RRs, which are set once for a process and
and can easily be reloaded on a context switch. Contrast
this to the PowerPC, where the set of VSIDs make up
the segment table and are cached in the SLB. The im-
plications of this difference should become clearer later
on.

However, I consider it unlikely that IBM does not
support context switches without SLB flushes on their
high-end servers, so I assume that the information on
the architecture I have presently at hand is incomplete.
Hence I suggest that further discussion of this architec-
ture be deferred until we have specific documentation of
memory management on 64-bit PowerPCs.

4 What can I do with these tags?

In this section I’ll discuss the ways the tags would be
used in a MASOS or SASOS scenario. Assuming that
the MASOS or SASOS is to be implemented on top of
L4, I’ll discuss whether the tag assignment can be done
by the kernel or not.

4.1 Address-space IDs

Irrespective of whether I’m building a MASOS or a
SASOS, I want to associate each process with a unique

3



ASID, and want to tag all of the process’s TLBEs with
that ASID value. An exception would be hardware
which provides other tagging schemes as well, but I am
not aware of such an architecture. ASID assignment is
a fairly mechanical process, and I’d be happy to leave it
to the kernel.

A complication arises from the fact that the number
if ASIDs is limited, and can easily be exceeded by the
number of processes in the system. This requires pre-
emption of a process’s ASID, and a (costly) invalidation
of all TLBEs tagged with it. The preemption strategy
introduces a significant amount of policy. As long as
it can be assumed that theprocess working setis small
compared to the number of ASIDs available, and ASID
preemption is rare, the actual preemption policy is irrel-
evant and it doesn’t matter whether it is done in the ker-
nel or by the OS server. However, it is probably possi-
ble to construct for each preemption strategy a scenario
where it performs badly. This makes it dubious whether
ASID handling should be done by the kernel.

Things become even more complicated if the Pen-
tium’s segment registers are used to simulate ASIDs.
This introduces additional policy — which address
spaces are considered “small”. “Small” address spaces
can be switched quickly, but are limited in size, as all
of them must share the Pentium’s 32-bit address space
with the largest possible “large” address space, plus the
kernel-reserved address-space region. It seems unrea-
sonable to leave the allocation of small-address-space
IDs (SmASIDs) to the kernel.

4.2 Region IDs

The only architectures which presently provide RIDs are
IA-64 and its predecessor PA-RISC, both of which also
provide PKs. This combination implies that optimal
TLB management differs markedly between a MASOS
and a SASOS.

4.2.1 In a MASOS

For a MASOS I want to associate each process with a
unique RID. RIDs are plentiful enough so that preemp-
tion is not considered an issue, so RID assignment could
safely be left to the kernel, if a traditional approach to
address-space management is used.

However, this makes poor use of RIDs. The architec-
ture allows us to share TLB entries, e.g. for shared text
segments of executables, by assigning a separate RID
to the executable [AH01]. In general this approach re-
quires at least two different RIDs associated with each
process, in two or more RRs, one for process-private
data and one for shared data and code. The kernel may
want to reserve one RR for global data. The non-kernel
RRs are initialised at process creation time and remain

unchanged for the lifetime of the process. This scheme
requires some control over RIDs by the OS server.

4.2.2 In a SASOS

When building a SASOS in IA-64 there is no need to
use RIDs for tagging TLB entries. Of course, they can-
not simply be turned off. Instead they would effectively
be disabled by assigning a fixed unique RID value to
each RR entry (e.g., just the RR number), independent
of any process. A MASOS-like per-process assignment
of RIDs would defeat the potential of the architecture to
share TLBEs for shared pages in a SASOS.

4.3 Protection keys

Protection keys (while also supported on PA-RISC) are
only really an issue on IA-64, where they would be
used as an alternative to, or in combination with, region
IDs. Their use differs significantly between MASOS
and SASOS.

4.3.1 In a SASOS

A SASOS would express all access rights in the PKRs,
and set the TLBEs permissions to maximum access. The
PKR entries are used to define access rights. This is
straightforward if the OS server has control over the PKs
tagged to particular mappings. Alternatively the kernel
could detect shared pages, assign PKs on the fly, and mi-
grate the permission bits from the TLBEs to the PKRs.
This requires probing or flushing the TLB when a page
is first mapped into a second address space.

4.3.2 In a MASOS

In a traditional approach to MASOS, protection keys
would be disabled (or rather, all TLBEs would be tagged
with the same PK, and the corresponding PKR would be
pre-loaded with a never-changing entry that allows all
access).

However, if one wants to utilise the architecture’s po-
tential for sharing TLBEs on shared pages, one would
use them in a SASOS-like fashion (discussed above)
[AH01]. The above comments apply here as well.

4.4 Domain IDs

DIDs are very similar to PKs and can be used in pretty
much the same way. The main difference is that the
number of DIDs is very small, and the preemption pol-
icy becomes quite important [WH00]. If DID manage-
ment is done inside the kernel, it must be ensured that
the DID consumption rate is minimised. For example,
the kernel would need to ensure that all pages shared by
two particular processes are tagged with the same DID.

4



More so than in the ASID case, the rather restricted
set of DIDs makes it likely that any particular preemp-
tion policy will break under some reasonably realistic
scenario.

With respect to managing the PIDR address-space re-
location, the comments made on SmASIDs apply corre-
spondingly.

5 What do I want from L4?

In short, I want the kernel to get out of my way as much
as possible. Efficient use of the hardware should not be
obstructed by the kernel. This is another way of saying
that the kernel should be policy-free.

Let’s therefore revisit the various tagging schemes
under the angle of whether they should be managed by
the kernel or the OS server implemented on top of it.

5.1 Region IDs

As explained above, there must at least be a way to turn
off RID assignment, in order to support a SASOS. This
could presumably be done by a global state flag.3

The scheme for sharing TLB entries for shared text
segments [AH01] requires that at least two different RID
tags are utilised for a each process, one for private data
and one for shared data. Changing the region on the fly
when sharing is detected is not feasible, as this would
require changing the virtual address. Hence,someuser-
level control over RID assignment is necessary.

Any limited control is likely to be a foul compromise.
I think that we should bite the bullet and give the OS
serverfull control over RID assignment. This can be
achieved by making RRs accessible to user code.

I postulate that L4 mustgive OS servers
control over RRs.

The kernel might reserve one or two RRs for its own
use, the others would be set at address-space creation
time. I see no need to change them later, unless RIDs
need to be pre-empted. Given the large number this
seems unlikely; IA-64’s218 possible RID values will
support about 100-200k concurrent processes.

Note that this approach is not likely to be suitable for
ESIDs on 64-bit PowerPCs.

5.2 Address-space IDs

As mentioned earlier, RIDs are a generalisation of
ASIDs. ASIDs do not support sharing of TLB entries

3Global to the particular OS server, at least; different OS personal-
ities should be able to implement different address-space management
policies.

(other than for truly global data accessible by every-
body). Therefore, control over theirassignmentisn’t
necessarily required.

However, the issue of ASIDpreemptionhas been
brought up before, and the fact that this introduces a
rather uncomfortable amount of policy into the kernel. It
could be argued that ASIDs have been kernel-managed
on all ASID-tagged architecture where L4 has been im-
plemented to date (MIPS and Alpha), and no-one has
complained so far. However, it must then also be admit-
ted that none of these L4 implementations has to date
been used in a production setting where ASID preemp-
tion would have been an issue. We don’t really have any
relevant experience with ASID recycling.

Add to this the fact that the small-address-space trick,
which simulates ASIDs on the Pentium, requires that
this simulated ASID be user-managed. If user-level
management of SmASIDs is accepted to be necessary,
we might as well do the same for real ASIDs (and for
the PIDR).

I postulate that L4 should leave ASID
management to the user level, and the
mechanism to do this should be analogous
to the mechanism for managing small ad-
dress spaces on the Pentium, and for the
StrongARM PIDR.

The present (V2) mechanism for assigning SmASIDs
on the Pentium is via thethread schedule()
syscall. This serves to declare an address space as
“small”, assign a SmASIDs to it, as well as for inval-
idating the SmASID (I think — this isn’t really docu-
mented). The same mechanism should be applicable for
ASIDs and for the PIDR. The question remains what the
kernel’s default ASID assignment would be, if no ASID
is supplied explicitly.

Note that the way present ix86 kernels deal with
SmASIDs introduces a significant amount of policy into
the kernel: the size of a small address space, the number
of small address spaces (and, by implication, the maxi-
mum size of a “large” address space).

5.3 Domain IDs

The amount of policy introduced into the kernel by man-
aging the assignment and, in particular, preemption of
DIDs [WH00] is outright intolerable. Whatever pol-
icy is implemented in the kernel is likely to go horribly
wrong in some cases.

I postulate that DID managementmust
be done at L4 user level.

The way to provide user-level control over DID as-
signment would be to specify a DID to each mapping
IPC. There are some problems with this approach, for

5



example the fact that duplicate mappings that only dif-
fer by the RID must not be inserted into the TLB. Also,
the fact that regions apply to 1MB sections makes this
approach messy and error-prone.

A better way to deal with this seems to be Szma-
jda’s proposedlinking of fpages [Szm01], which shares
address-space regions by sharing page table subtrees. A
mechanism must be provided to specify the DID when
the fpage is linked (i.e., at linking-IPC time). The ker-
nel would ignore the specification if it is not for a correct
(1MB) size fpage.

Revoking the DID assignment would be done by un-
mapping all pages tagged with a particular DID. The OS
server can be held responsible for remembering which
pages were tagged with a particular PK.

5.4 Protection keys

As discussed inSection 4.3.1, the kernel could assign
PKs on demand (i.e., when it discovers sharing). This
is a reasonable thing to do, as it doesn’t introduce pol-
icy as such. There are, however, a number of issues to
consider:

• The limited number of PKRs (16 on the first Ita-
nium generation) makes PKR entry caching essen-
tial. Putting the cache into the kernel is clearly
fastest and is simple as far as the API is concerned.
As the PKRs are totally software managed this
raises the issue of the replacement policy. How-
ever, this is not a serious policy issue as long as
reloads are fast.

• The kernel has no way of telling which pages
shared by a particular pair of processes are part of
the same logical object. If a page shared between
two processes is mapped to a third process, it must
be given a PK separate from any used for pages
shared between the two original processes. The
kernel needs to change PKs frequently (requiring
a TLB flush each time) or using a unique PK for
each shared page. This consumes PKs at a much
higher rate than if PKs were controlled by the OS
server, which knows which pages belong together
(and always share their permissions). Whether or
not this is a problem depends on whether the num-
ber of shared pages is likely to exceed the number
of protection keys. The specified minimum of218

is sufficient for 2GB of shared memory when using
an 8kB page size.

• The fact that PKs are very much like DIDs (except
that they are far more plentiful) speaks in favour
of treating them the same. Ideally this is done in a
way that still allows PKR management to be done
by the kernel.

I postulate that PK management should
be done at user level, using the same mech-
anism as for DIDs. The PKRs should re-
main under kernel control.

The preferred mechanism is again Szmajda’s fpage-
linking mechanism, with the addition of specifying a PK
when the link is set up. Contrary to domains there is no
restriction on the size of the fpage to be linked.

Revocation is as with DIDs.

6 Suggested APIs for TLB Tags

According to the discussion in the preceding section,
three kinds of tag manipulation are required: initiali-
sation of RIDs, specification and invalidation of ASIDs
and their equivalents, and specification and revocation
of PKs and equivalent. Here we examine ways to
achieve this in the V4 API [L4K01].

6.1 Specifying RIDs

RIDs only need to be explicitly specified at address-
space creation time, by specifying the contents of the
RRs. The obvious way to do this is via theSpaceCon-
trol() system call. While the architecture specifies 8
RRs, the kernel may reserve one of them for its own
use. Hence thekernel interface page(KIP) should spec-
ify the number of available RRs (which also limits the
amount of virtual address space usable by user code).

The RR values could be specified either by explic-
itly passing them in general purpose registers, or by
adding appropriatevirtual registers. The former ap-
proach has the drawback that theSpaceControl()
syscall would have architecture-specific arguments. The
latter approach has the drawback that it introduces vir-
tual registers which aren’t thread-specific but address-
space specific. I don’t have a strong opinion on this.

6.2 Specifying ASIDs, SmASIDs and PIDs

In this section the term “ASID” is meant to include
“SmASID” as well as the contents of the StrongARM
PIDR.

6.2.1 Setting up ASIDs

Previous versions of L4 for IA-32 used
thread schedule() to control the SmASID,
and earlier drafts of the V4 API used the corresponding
schedule() syscall. The draft dated 4 October 2001
changed this to useSpaceControl() . The logic
behind this change is, presumably, that the SmASID is
an address-space attribute rather than a thread attribute,
and the same applies for ASIDs. Furthermore, ASIDs

6



are a limited resource, which must be shared between
all servers running on top of L4.

I propose that the semantics of thecontrol argu-
ment toSpaceControl() , which is used for ASID
assignment, be generalised as follows:

• The ASID field incontrol is widened to at least
32 bits.

• The KIP specifies the range of ASIDs supported
by the hardware. Note that this value may differ
between different implementation of the same ba-
sic architecture. The kernel may reserve a small
number of ASID values for its own use (typically
ASID zero).

• There is one ASID value reserved for “large” ad-
dress spaces. This value is used for non-relocated
address spaces on ix86 and StrongARM, and is
also to be used for architectures with untagged
TLBs (including IA-64).

• Assignments of kernel-reserved ASID values to
user address spaces is illegal.

• Assignments of an ASID value larger than the
largest supported one is legal, but it implies that no
thread of such an address space is runnable. This
supports non-destructive revocation of ASIDs from
address spaces.

The question remains what the meaning of the “large”
ASID is on architectures with an ASID-tagged TLB. It
could be treated like an out-of-range value.

6.2.2 Revoking ASIDs

The need to revoke ASIDs requires further considera-
tion. Assignment of an ASID to an address space should
implicitly preempt that ID from any other address space
it may have been assigned to previously. This makes
an explicit mechanism for ASID revocation unneces-
sary. The proposed semantics ofSpaceControl()
already supports non-destructive calls on an existing ad-
dress space, so the specification needs to be clarified so
that it allows to make use of it for ASID assignment.

6.3 Specifying PKs and DIDs

In this section the term “PK” is meant to include “DID”.

6.3.1 Setting up PKs

In order to keep things simple, we will support TLBE
sharing only when also sharing page tables, i.e. when re-
gions of two or more address spaces arelinked[Szm01].
This will greatly simplify implementation of PKs (and
implicitly ensures that the same-address requirement is
met).

PKs are specified via the linkingIpc() system call.
I don’t have a strong opinion as to whether this should
happen via an additional argument or via a virtual regis-
ter. It cannot be done via aLinkItem, as there is insuffi-
cient space left. As well, it makes sense to use the same
PK for all linkings specified in a singleIpc() call.

The semantics of linking linked pages to further ad-
dress spaces must be clarified. As all pages linked to-
gether must share a PK, there are three possibilities:

1. When linking pages which are already linked, any
PK specification is ignored.

2. When linking pages which are already linked, any
PK specification overrides any previous PK speci-
fication for those pages.

3. When linking pages which are already linked, any
PK specification must be the same as any previous
PK specified for those pages.

I don’t have a strong opinion on which is to be preferred,
and would suggest to determine this based on imple-
mentation considerations. However, the second variant
might be insecure.

Remember that ARM DIDs apply to whole 1MB sec-
tions only. Linking of other fpages might still be sup-
ported, but a PK specification would be ignored unless
it is for an fpage of at least 1MB in size.

6.3.2 Revoking PKs

PKs can be revoked by flushing all links to a page. The
semantics are that the kernel removes the PK from a
page if its link count falls below two.

In addition, flushing by PK can be considered. This
could work by theUnmap() syscall supporting the use
of a PK list as an alternative to an fpage list. The advan-
tage of this scheme would be increased efficiency and
ease of revocation. The drawback is that it is not neces-
sary (and thus should not be supported according to the
microkernelcredo). So it’s probably not a good idea.

7 Conclusions

An examination of appropriate use of TLB tags in either
a MASOS or a SASOS scenario leads to the conclu-
sion that tag management should be under the control of
the OS personality implemented on top of L4. The mi-
crokernel needs to provide mechanisms that enable OS
servers to perform this task.

References

[AH01] Alan Au and Gernot Heiser. TLB shar-
ing in IA-64 Linux. In Australian

7



Linux Conference, January 2001. Avail-
able from http://www.cse.unsw.edu.au/
∼disy/papers/.

[Dig92] Digital Equipment Corp., Maynard, MA,
USA. Alpha Architecture Handbook, 1992.

[Hei93] Joseph Heinrich.MIPS R4000 User’s Man-
ual. Prentice Hall, 1993.

[IBM01] IBM. PowerPC 405GP Embedded Pro-
cessor User’s Manual, 9th edition, March
2001.

[Int98] Intel Corp.SA-1100 Microprocessor Tech-
nical Reference Manual, September 1998.
Order no: 278088-001.

[Int00] Intel Corp. IA-64 Architecture Soft-
ware Developer’s Manual Volume 2: IA-
64 System Architecture, January 2000.
URL http://developer.intel.com/design/
ia-64/index.htm, order no 245318-001.

[Jag95] Dave Jagger, editor. Advanced RISC
Machines Architecture Reference Manual.
Prentice Hall, July 1995.

[L4K01] L4Ka Team. L4 eXperimentalKernel Ref-
erence Manual. University of Karlsruhe,
version 4-x.2 edition, October 2001.http:
//l4ka.org/projects/version4/l4-x2.pdf.

[Lee89] Ruby B. Lee. Precision architecture.IEEE
Computer, 22(1):78–91, January 1989.

[Lie95] Jochen Liedtke. Improved address-space
switching on Pentium processors by trans-
parently multiplexing user address spaces.
Technical Report 933, GMD SET-RS,
Schloß Birlinghoven, 53754 Sankt Au-
gustin, Germany, November 1995.

[MSSW94] Cathy May, Ed Silha, Rick Simpson, and
Hank Warren, editors.The PowerPC Ar-
chitecture: A Specification for a New Fam-
ily of RISC Processors. Morgan Kaufmann,
1994.

[Sun97] Sun Microsystems, Palo Alto, CA, USA.
UltraSPARC User’s Manual, July 1997.

[Szm01] Cristan Szmajda. Calypso: A portable
translation layer. Subm. to L4 Workshop,
August 2001.

[WH00] Adam Wiggins and Gernot Heiser. Fast
address-space switching on the Stron-
gARM SA-1100 processor. InProceedings
of the 5th Australasian Computer Archi-
tecture Conference (ACAC), pages 97–104,

Canberra, Australia, January 2000. IEEE
CS Press.

8

http://www.cse.unsw.edu.au/~disy/papers/
http://www.cse.unsw.edu.au/~disy/papers/
http://developer.intel.com/design/ia-64/index.htm
http://developer.intel.com/design/ia-64/index.htm
http://l4ka.org/projects/version4/l4-x2.pdf
http://l4ka.org/projects/version4/l4-x2.pdf

	Introduction
	TLB Tags
	Other Architectures
	What can I do with these tags?
	Address-space IDs
	Region IDs
	In a MASOS
	In a SASOS

	Protection keys
	In a SASOS
	In a MASOS

	Domain IDs

	What do I want from L4?
	Region IDs
	Address-space IDs
	Domain IDs
	Protection keys

	Suggested APIs for TLB Tags
	Specifying RIDs
	Specifying ASIDs, SmASIDs and PIDs
	Setting up ASIDs
	Revoking ASIDs

	Specifying PKs and DIDs
	Setting up PKs
	Revoking PKs


	Conclusions

